ECEN689: Special Topics in Optical Interconnects Circuits and Systems Spring 2022

Lecture 5: Transimpedance Amplifiers (TIAs)

Sam Palermo
Analog \& Mixed-Signal Center
Texas A\&M University

Announcements

- Homework 2 is posted on website and due today
- Exam 1 Mar 10
- In class
- One double-sided 8.5×11 notes page allowed
- Bring your calculator
- Covers through Lecture 6
- Reading
- Sackinger Chapter 5
- Razavi Chapter 4

Agenda

- Optical Receiver Overview
- Transimpedance Amplifiers
- Common-Gate TIAs
- Feedback TIAs
- Common-Gate \& Feedback TIA Combinations
- Differential TIAs
- Integrating Optical Receivers
- Equalization in Optical Front-Ends

Optical Receiver Technology

- Photodetectors convert optical power into current
- p-i-n photodiodes
- Waveguide Ge photodetectors
- Electrical amplifiers then convert the photocurrent into a voltage signal
- Transimpedance amplifiers
- Limiting amplifiers
- Integrating optical receiver

Transimpedance Amplifier (TIA)

Also expressed in units of $\mathrm{dB} \Omega$ by $20 \log \left(Z_{T} \mid\right)$

- Key design objectives
- High transimpedance gain
- Low input resistance for high bandwidth and efficient gain
- For large input currents, the TIA gain can compress and pulse-width distortion/jitter can result

Maximum Currents

- Input Overload Current
- The maximum peak-to-peak input current for which we can achieve the desired BER
- Assuming high extinction ratio $i_{o v l}^{p p}=2 R \bar{P}_{\text {ovl }}$
- Maximum Input Current for Linear Operation
- Often quantified by the current level for a certain gain compression (1dB)

$$
i_{l i n}^{p p}<i_{o v l}^{p p}
$$

Resistive Front-End

$$
\begin{aligned}
& \text { [Razavi] } \\
& R_{T}=R_{\text {in }}=R_{L} \\
& B W_{3 d B}=\omega_{p}=\frac{1}{R_{i n} C_{D}}=\frac{1}{R_{L} C_{D}} \\
& \overline{I_{n, R}^{2}} \ddagger \sum_{\sum^{2} R_{L} \underset{I}{ } C_{D}}^{0} \overline{V_{n, \text { out }}^{2}} \\
& \begin{aligned}
\overline{V_{n, \text { out }}^{2}}=\int_{0}^{\infty} \overline{I_{n}^{2}} Z_{T}^{2} d f & =\int_{0}^{\infty} \frac{4 k T}{R_{L}}\left(\frac{R}{1+j 2 \pi f R C}\right)^{2} d f=\frac{k T}{C_{D}} \\
\overline{I_{n, \text { in }}^{2}} & =\frac{\overline{V_{n, \text { out }}^{2}}}{R_{L}^{2}}=\frac{k T}{R_{L}^{2} C_{D}}
\end{aligned} \\
& I_{n, i n, m s}=\frac{\sqrt{K T / C_{D}}}{R_{L}}
\end{aligned}
$$

- Direct trade-offs between transimpedance, bandwidth, and noise performance
- Optical Receiver Overview
- Transimpedance Amplifiers
- Common-Gate TIAs
- Feedback TIAs
- Common-Gate \& Feedback TIA Combinations
- Differential TIAs
- Integrating Optical Receivers
- Equalization in Optical Front-Ends

Common-Gate TIA

$$
\begin{aligned}
& R_{T}=R_{D} \\
& R_{i n}=\frac{r_{o}+R_{D}}{1+\left(g_{m}+g_{m b}\right) r_{o}} \approx \frac{1}{g_{m}}
\end{aligned}
$$

- Input resistance (input bandwidth) and transimpedance are decoupled

Common-Gate TIA Frequency Response

[Razavi]

Neglecting transistor $\mathbf{r}_{\mathbf{0}}: \frac{v_{\text {out }}}{i_{\text {in }}}=\frac{R_{D}}{\left(1+s \frac{C_{\text {in }}}{g_{m 1}+g_{m b 1}}\right)\left(1+s R_{D} C_{\text {out }}\right)}$

- Often the input pole may dominate due to large photodiode capacitance (100 - 500fF)

Common-Gate TIA Noise

Neglecting transistor \mathbf{r}_{0} :

$$
\overline{I_{n, i n}^{2}}=4 k T\left(\frac{2}{3} g_{m 2}+\frac{1}{R_{D}}\right) \quad\left(\frac{\mathbf{A}^{2}}{\mathbf{H z}}\right)
$$

- Both the bias current source and RD contribute to the input noise current
- RD can be increased to reduce noise, but voltage headroom can limit this
- Common-gate TIAs are generally not for low-noise applications
- However, they are relatively simple to design with high stability

Regulated Cascode (RGC) TIA

- Input transistor gm is boosted by commonsource amplifier gain, resulting in reduced input resistance
- Requires additional voltage headroom
- Increased input-referred noise from the commonsource stage
[Park ESSCIRC 2000]

$$
Z_{i n}(0) \cong \frac{1}{g_{m 1}\left(1+g_{m B} R_{B}\right)}
$$

CMOS 20GHz TIA

- An additional commongate stage in the feedback provides further gm-boosting and even lower input resistance
- Shunt-peaking inductors provide bandwidth extension at zero power cost, but very large area cost

$$
\begin{gathered}
Z_{i} \approx \frac{1}{g_{m 1}\left(1+\left|A_{2} A_{3}\right|\right)+j \omega C_{\mathrm{i}, \mathrm{tot}}} \\
A_{2}=g_{m 2} R_{2} \quad A_{3}=-g_{m 3} R_{3}
\end{gathered}
$$

- Optical Receiver Overview
- Transimpedance Amplifiers
- Common-Gate TIAs
- Feedback TIAs
- Common-Gate \& Feedback TIA Combinations
- Differential TIAs
- Integrating Optical Receivers
- Equalization in Optical Front-Ends

Feedback TIA w/ Ideal Amplifier

- Input bandwidth is extended by the factor $\mathrm{A}+1$
- Transimpedance is approximately R_{F}
- Can make R_{F} large without worrying about voltage headroom considerations

Feedback TIA w/ Finite Bandwidth Amplifier

With Finite Bandwidth Amplifier :

- Finite bandwidth amplifier modifies the transimpedance transfer function to a secondorder low-pass function

$$
A(s)=\frac{A}{1+\frac{s}{\omega_{A}}}=\frac{A}{1+s T_{A}}
$$

$$
\begin{aligned}
& Z_{T}(s)=-R_{T}\left(\frac{1}{1+s /\left(\omega_{o} Q\right)+s^{2} / \omega_{o}^{2}}\right) \\
& \text { out } \\
& R_{T}=\frac{A}{A+1} R_{F} \\
& \omega_{o}=\sqrt{\frac{A+1}{R_{F} C_{T} T_{A}}}
\end{aligned}
$$

$$
Q=\frac{\sqrt{(A+1) R_{F} C_{T} T_{A}}}{R_{F} C_{T}+T_{A}}
$$

$$
R_{i n}=\frac{R_{F}}{A+1}
$$

Feedback TIA w/ Finite Bandwidth Amplifier

- Non-zero amplifier time constant can actually increase TIA bandwidth!!
- However, can result in peaking in frequency domain and overshoot/ringing in time domain
- Often either a Butterworth ($\mathrm{Q}=1 / \mathrm{sqrt}(2)$) or Bessel response ($\mathrm{Q}=1 / \mathrm{sqrt}(3)$) is used
- Butterworth gives maximally flat frequency response
- Bessel gives maximally flat groupdelay

Feedback TIA Transimpedance Limit

If we assume a Butterworth response for razimally flat frequency response :

$$
Q=\frac{1}{\sqrt{2}} \quad \Rightarrow \quad \omega_{A}=\frac{1}{T_{A}}=\frac{2 A}{R_{F} C_{T}}
$$

For a Butterworth response:

$$
\omega_{3 \mathrm{~dB}}=\omega_{0}=\sqrt{\frac{(A+1) \omega_{A}}{R_{F} C_{T}}}=\frac{\sqrt{(A+1) 2 A}}{R_{F} C_{T}} \approx \sqrt{2} \text { times larger than } T_{A}=0 \text { case of } \frac{A+1}{R_{F} C_{T}}
$$

Plugging $R_{T}=\frac{A}{A+1} R_{F}$ into above expression yields the maximum possible R_{T} for a given bandwidth

$$
\sqrt{\frac{(A+1) \omega_{A}}{\left(\frac{A+1}{A}\right) R_{T} C_{T}}} \geq \omega_{3 \mathrm{~dB}}
$$

Maximum $R_{T} \leq \frac{A \omega_{A}}{C_{T} \omega_{3 d B}^{2}}$
[Mohan JSSC 2000]

- Maximum R_{T} proportional to amp gain-bandwidth product
- If amp GBW is limited by technology f_{T}, then in order to increase bandwidth, R_{T} must decrease quadratically!

Feedback TIA

Assuming that the source follower has an ideal gain of 1

$$
\begin{gathered}
A=g_{m 1} R_{D} \\
R_{T}=\frac{g_{m 1} R_{D}}{1+g_{m 1} R_{D}} R_{F} \\
R_{\text {in }}=\frac{R_{F}}{1+g_{m 1} R_{D}} \\
R_{\text {out }}=\frac{1}{g_{m 2}\left(1+g_{m 1} R_{D}\right)}
\end{gathered}
$$

- As power supply voltages drop, there is not much headroom left for RD and the amplifier gain degrades

CMOS Inverter-Based Feedback TIA

- CMOS inverter-based TIAs allow for reduced voltage headroom operation
- Cascaded inverter-gm + TIA stage provide additional voltage gain
- Low-bandwidth feedback loop sets the amplifier output common-mode level

Input-Referred Noise Current

- TIA noise is modeled with an input-referred noise current source that reproduces the output TIA output noise when passed through an ideal noiseless TIA
- This noise source will depend on the source impedance, which is determined mostly by the photodetector capacitance

Input-Referred Noise Current Spectrum

- Input-referred noise current spectrum typically consists of uniform, high-frequency f^{2}, \& lowfrequency $1 / \mathrm{f}$ components
- To compare TIAs, we need to see this noise graph out to ~2X the TIA bandwidth
- Recall the noise bandwidth tables

Input-Referred RMS Noise Current

- The input-referred rms noise current can be calculated by dividing the rms output noise voltage by the TIA's midband transimpedance value

$$
i_{n, T I A}^{m m s}=\frac{1}{R_{T}} \sqrt{\int_{0}^{2 B W} \mid Z_{T}(f)^{2} I_{n, T I A}^{2}(f) d f}
$$

- If we integrate the output noise, the upper bound isn't too critical. Often this is infinity for derivations, or 2 X the TIA bandwidth in simulation
- This rms current sets the TIA's electrical sensitivity

$$
i_{s e n s}^{p p}=2 Q i n, T I A
$$

- To determine the total optical receiver sensitivity, we need to consider the detector noise and responsivity

Averaged Input-Referred Noise Current Density

- TIA noise performance can also be quantified by the averaged input-referred noise current density

$$
i_{n, T I A}^{a v g}=\frac{i_{n}^{r m s}}{\sqrt{B W_{3 d B}}}
$$

This quantity has units of $\left(\frac{\mathrm{pA}}{\sqrt{\mathrm{Hz}}}\right)$.

Note, this is different than averaging the input - referred noise spectrum,
$I_{n, T I A}^{2}(f)$ over the TIA bandwidth.

FET Feedback TIA Input-Referred Noise Current Spectrum

- The feedback resistor and amplifier front-end noise components determine the input-referred noise current spectrum

$$
I_{n, \text { TTA }}^{2}(f)=I_{n, \text { res }}^{2}(f)+I_{n, \text { froun }}^{2}(f)
$$

- The feedback resistor component is uniform with frequency

$$
I_{n, \text { res }}^{2}(f)=\frac{4 k T}{R_{F}}
$$

FET Feedback TIA Input-Referred Noise Current Spectrum

- Gate current-induced shot noise

$$
I_{n, G}^{2}=2 q I_{G}
$$

This is typically small for CMOS designs

- FET channel noise

$$
I_{n, D}^{2}=4 k T \Gamma g_{m}
$$

Γ is the channel noise factor, typically $0.7-3$ depending on the process.

Input-Referring the FET Channel Noise

To do this, we could calculate $\frac{i_{n, T I A}}{i_{n, D}}=\frac{\left(\frac{v_{\text {out }}}{i_{n, D}}\right)}{Z_{T}}$
But it is easier (and equivalent) to ground the output and calculate

$$
i_{n, D}=g_{m} v_{n, T I A}=\frac{\left(\frac{i_{n, D}}{i_{n, T I A}}\right)^{-1}}{g_{m} i_{n, T I A}}{ }_{s C_{T}+\frac{1}{R_{F}}}=\frac{g_{m} R_{F}}{1+s R_{F} C_{T}} i_{n, T I A}
$$

where $C_{T}=C_{D}+C_{I}$, the summation of the detector and amplifier input capacitance.

$$
\left(\frac{i_{n, D}}{i_{n, T I A}}\right)^{-1}=\frac{1+s R_{F} C_{T}}{g_{m} R_{F}}
$$

Using this high - pass transfer function, the input - referred FET channel noise is

$$
I_{n, \text { front }, D}^{2}(f)=\frac{1+\left(2 \pi f R_{F} C_{T}\right)^{2}}{\left(g_{m} R_{F}\right)^{2}} \cdot 4 k T \Gamma g_{m}
$$

$$
=4 k T \Gamma\left(\frac{1}{g_{m} R_{F}^{2}}\right)+4 k T \Gamma\left(\frac{\left(2 \pi C_{T}\right)^{2}}{g_{m}}\right) f^{2} \quad \text { Uniform and } f^{2} \text { component! }
$$

Total Input-Referred FET Feedback TIA Noise

$$
\xrightarrow[\text { k Resistor }]{I_{n, T I A}^{2}(f)}=\frac{4 k T}{R_{F}}+2 q I_{G}+4 k T T\left(\frac{1}{g_{m} R_{F}^{2}}\right)+\underbrace{}_{\text {FETe Shot Noise }}+4 k T T\left(\frac{\left(2 \pi C_{T}\right)^{2}}{g_{m}}\right) f^{2}
$$

- Note that the TIA input-referred noise current spectrum begins to rise at a frequency lower than the TIA bandwidth
- Optical Receiver Overview
- Transimpedance Amplifiers
- Common-Gate TIAs
- Feedback TIAs
- Common-Gate \& Feedback TIA Combinations
- Differential TIAs
- Integrating Optical Receivers
- Equalization in Optical Front-Ends

Common-Gate \& Feedback TIA

Feedback TIA

[Mohan JSSC 2000]

- Recall that the feedback TIA stability depends on the ratio of the input pole (set by C_{D}) and the amplifier pole
- Large variation in C_{D} can degrade amplifier stability
- Common-gate input stage isolates C_{D} from input amplifier capacitance, allowing for a stable response with a variety of different photodetectors
- Transimpedance is still approximately $\mathrm{R}_{\mathrm{F}} \mathrm{A} /(1+\mathrm{A})$

BJT Common-Base \& Feedback TIA

- Transformer-based negative feedback boosts gm with low power and noise overhead
- Input series peaking inductor isolates the photodetector capacitance from the TIA input capacitance
- High frequency techniques allow for 26 GHz bandwidth with group delay variation less than 19ps
[Li JSSC 2013]
- Optical Receiver Overview
- Transimpedance Amplifiers
- Common-Gate TIAs
- Feedback TIAs
- Common-Gate \& Feedback TIA Combinations
- Differential TIAs
- Integrating Optical Receivers
- Equalization in Optical Front-Ends

Differential TIAs

- Differential circuits have superior immunity to power supply/substrate noise
- A differential TIA output allows easy use of common differential main/limiting amplifiers

- This comes at the cost of higher noise and power
- How to get a differential output with a single-ended photocurrent input?
- Two common approaches, based on the amount of capacitance applied at the negative input

Balanced TIA

- A balanced TIA design attempts to match the capacitance of the two differential inputs

$$
C_{X} \approx C_{D}
$$

- This provides the best power supply/substrate noise immunity, as the noise transfer functions are similar
- Due to double the circuitry, the input-referred rms noise current is increased by sqrt(2)

Assuming an high BW amplifier

$$
\text { and } C_{T}=C_{D}+C_{I}
$$

$Z_{T}(s)=\frac{v_{O P}-v_{O N}}{i_{i}}=\frac{\left(\frac{A}{A+1}\right) R_{F}}{1+\frac{s C_{T} R_{F}}{A+1}}$

Pseudo-Differential TIA

- A pseudo-differential TIA design uses a very large capacitor at the negative input, such that it can be approximated as an AC ground

$$
C_{X} \rightarrow \infty
$$

- While not good to reject power supply/substrate noise, it does

Assuming an high BW amplifier

$$
\text { and } C_{T}=C_{D}+C_{I}
$$ provide significant filtering of the R_{F} ' noise

- The differential transimpedance is approximately doubled relative to the single-ended case

$$
Z_{T}(s)=\frac{v_{O P}-v_{O N}}{i_{i}}=\frac{\left(\frac{2 A}{A+2}\right) R_{F}}{1+\frac{s C_{T} R_{F}}{\frac{A}{2}+1}}
$$

Offset Control

- Due to the single-ended photodetector signal, the differential output signal swings from 0 to $\mathrm{V}_{\mathrm{ppd}}$, which can limit the dynamic range
- Adding offset control circuitry can allow for an output swing of $\pm \mathrm{V}_{\mathrm{ppd}} / 2$

Differential Shunt Feedback TIA

- Optical Receiver Overview
- Transimpedance Amplifiers
- Common-Gate TIAs
- Feedback TIAs
- Common-Gate \& Feedback TIA Combinations
- Differential TIAs
- Integrating Optical Receivers
- Equalization in Optical Front-Ends

Optical RX Scaling Issues

© Traditionally, TIA has high R_{T} and low $\mathrm{R}_{\text {in }}$

$$
\begin{aligned}
& R_{T}=R_{F}\left(\frac{A}{1+A}\right) \\
& \omega_{3 d B} \approx \frac{1+A}{R_{F} C_{I N}}
\end{aligned}
$$

(8) Headrooom/Gain issues in 1 V CMOS

- $A \approx 2-3$
- Power/Area Costs

$$
\begin{array}{lc}
\text { TIA } I_{D} \propto\left(R_{T} C_{I N}\right)^{2} f_{3 d B}^{4} & V_{A}=V_{G S 1}+V_{G S 2} \approx 0.8 * V D D \\
\text { LA } I_{D} \propto f_{3 d B}^{2} & A \approx g_{m 1} R_{D}=\frac{\alpha\left(V D D-V_{A}\right)}{V O D} \approx \frac{\alpha(0.2 * V D D)}{V O D}
\end{array}
$$

Integrating Receiver Block Diagram

[Emami VLSI 2002]

Demultiplexing Receiver

- Demultiplexing with multiple clock phases allows higher data rate
- Data Rate = \#Clock Phases x Clock Frequency
- Gives sense-amp time to resolve data
- Allows continuous data resolution

1V Modified Integrating Receiver

Differential Buffer
© Fixes sense-amp common-mode input for improved speed and offset performance
© Reduces kickback charge

* Cost of extra power and noise

Input Range $=0.6-1.1 \mathrm{~V}$

Receiver Sensitivity Analysis

$\operatorname{Max} \Delta \mathrm{V}_{\text {in }}\left(\Delta \mathrm{I}_{\mathrm{AVG}}\right)=0.6 \mathrm{mV}$

Integrating Receiver Sensitivity

- Test Conditions
- 8B/10B data patterns (variance of 6 bits)
- Long runlength data (variance of 10 bits)
- $\operatorname{BER}<10^{-10}$

Integrating RX with Dynamic Threshold

Integrating RX with Dynamic Threshold

[Nazari ISSCC 2012]

- Optical Receiver Overview
- Transimpedance Amplifiers
- Common-Gate TIAs
- Feedback TIAs
- Common-Gate \& Feedback TIA Combinations
- Differential TIAs
- Integrating Optical Receivers
- Equalization in Optical Front-Ends

Low-BW TIA \& CTLE Front-End

- Improved sensitivity is possible by increasing the first stage feedback resistor, resulting in a high-gain low-bandwidth TIA
- The resultant ISI is cancelled by a subsequent CTLE

Active CTLE Example

6Gb/s Eye - Refined BP Channel w/ RX CTLE Ec

Low-BW TIA \& CTLE Front-End

$$
\begin{aligned}
\overline{I_{n, \text { in }, \mathrm{SF}}^{2}(f)}= & \frac{4 k T}{R_{F}}+\frac{4 k T \gamma}{g_{m} R_{F}^{2}}+4 k T \gamma \frac{\left(2 \pi C_{\mathrm{tot}, \mathrm{in}}\right)^{2}}{g_{m}} f^{2} \\
& +\frac{4 k T \gamma}{g_{m, \text { post }} R_{F}^{2}}+\frac{4 k T \gamma}{g_{m, \text { post }} R_{F}^{2}}\left(\frac{f}{B W}\right)^{4}
\end{aligned}
$$

[Li JSSC 2014]

$$
\begin{aligned}
\overline{I_{n, \text { in }, \mathrm{TSFE}}^{2}(f)}= & \frac{4 k T}{R_{F} n^{2}}+\frac{4 k T \gamma}{g_{m} R_{F}^{2} n^{4}} \\
& +4 k T \gamma \frac{\left(2 \pi R_{F} n^{2} C_{\mathrm{tot}, \mathrm{in}}\right)^{2}}{g_{m} R_{F}^{2} n^{4}} f^{2}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{4 k T \gamma}{g_{m, \mathrm{eq}}^{2} R_{F}^{2} n^{4}}+\frac{4 k T \gamma}{g_{m, \mathrm{eq}}^{2} R_{F}^{2} n^{4}}\left(\frac{f}{B W / n}\right)^{4} \\
= & \frac{4 k T}{R_{F} n^{2}}+\frac{4 k T \gamma}{g_{m} R_{F}^{2} n^{4}}+4 k T \gamma \frac{\left(2 \pi C_{\mathrm{tot}, \mathrm{in}}\right)^{2}}{g_{m}} f^{2} \\
& +\frac{4 k T \gamma}{g_{m, \mathrm{eq}} R_{F}^{2} n^{4}}+\frac{4 k T \gamma}{g_{m, \mathrm{eq}} R_{F}^{2}}\left(\frac{f}{B W}\right)^{4}
\end{aligned}
$$

- Significant reduction in feedback resistor noise
- Low-frequency input and post amplifier noise is also reduced

Low-BW TIA \& CTLE Front-End

25Gb/s Eye Diagram

[Li JSSC 2014]

Low-BW TIA \& DFE RX

[Ozkaya JSSC 2017]

- In a similar manner, a high-gain low-bandwidth TIA is utilized
- The resultant ISI is cancelled by a subsequent 1-tap loopunrolled DFE

DFE Example

- If only DFE equalization, DFE tap coefficients should equal the unequalized channel pulse response values $\left[a_{1} a_{2} \ldots a_{n}\right]$
- With other equalization, DFE tap coefficients should equal the pre-DFE pulse response values
- DFE provides flexibility in the optimization of other equalizer circuits
- i.e., you can optimize a TX equalizer without caring about the ISI terms that the DFE will take care of

$$
\left[\mathrm{w}_{1} \mathrm{w}_{2}\right]=\left[\mathrm{a}_{1} \mathrm{a}_{2}\right]
$$

Low-BW TIA \& DFE RX

$1^{\text {st }}$ order TIA model pulse response (56Gb/s)

- As RF is increased, the main cursor increases and the SNR improves is ISI is cancelled by a DFE
- Large performance benefit with a low-complexity 1-tap DFE

Low-BW TIA \& DFE RX

- Self-referenced TIA is used for differential generation
- Actual $64 \mathrm{~Gb} / \mathrm{s}$ pulse response has a significant pre-cursor ISI tap, which requires a 2-tap TX FFE

64Gb/s Pulse Response \& Timing Margin

Next Time

- Main/Limiting Amplifiers

