ECEN720: High-Speed Links
Circuits and Systems
Spring 2017

Lecture 2: Channel Components, Wires, & Transmission Lines

Sam Palermo
Analog & Mixed-Signal Center
Texas A&M University
Announcements

• Lab
 • Lab begins on Jan 30 and is in CVLB 322
 • Prelab 1 due at beginning of lab on Jan 30
 • TA Ashkan Roshan Zamir
 • ashkanroshan@tamu.edu
 • Office Hours M 3PM-5PM, WEB 315A

• Reference Material Posted on Website
 • TDR theory application note
 • S-parameter notes
Agenda

- Channel Components
 - IC Packages, PCBs, connectors, vias, PCB Traces

- Wire Models
 - Resistance, capacitance, inductance

- Transmission Lines
 - Propagation constant
 - Characteristic impedance
 - Loss
 - Reflections
 - Termination examples
 - Differential transmission lines
Channel Components

[Meghelli (IBM) ISSCC 2006]
IC Packages

• Package style depends on application and pin count

• Packaging technology hasn’t been able to increase pin count at same rate as on-chip aggregate bandwidth
 • Leads to I/O constrained designs and higher data rate per pin

<table>
<thead>
<tr>
<th>Package Type</th>
<th>Pin Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small Outline Package (SOP)</td>
<td>8 – 56</td>
</tr>
<tr>
<td>Quad Flat Package (QFP)</td>
<td>64 - 304</td>
</tr>
<tr>
<td>Plastic Ball Grid Array (PBGA)</td>
<td>256 - 420</td>
</tr>
<tr>
<td>Enhanced Ball Grid Array (EBGA)</td>
<td>352 - 896</td>
</tr>
<tr>
<td>Flip Chip Ball Grid Array (FC-BGA)</td>
<td>1089 - 2116</td>
</tr>
</tbody>
</table>

[Package Images - Fujitsu]
IC Package Examples

- Wirebonding is most common die attach method
- Flip-chip packaging allows for more efficient heat removal
- 2D solder ball array on chip allows for more signals and lower signal and supply impedance
IC Package Model

Bondwires
- \(L \sim 1 \text{nH/mm} \)
- Mutual L “K”
- \(C_{\text{couple}} \sim 20 \text{fF/mm} \)

Package Trace
- \(L \sim 0.7-1 \text{nH/mm} \)
- Mutual L “K”
- \(C_{\text{layer}} \sim 80-90 \text{fF/mm} \)
- \(C_{\text{couple}} \sim 40 \text{fF/mm} \)
Printed Circuit Boards

- Components soldered on top (and bottom)

- Typical boards have 4-8 signal layers and an equal number of power and ground planes

- Backplanes can have over 30 layers
PCB Stackup

- Signals typically on top and bottom layers

- GND/Power plane pairs and signal layer pairs alternate in board interior

- Typical copper trace thickness
 - “0.5oz” (17.5um) for signal layers
 - “1oz” (35um) for power planes
Connectors

- Connectors are used to transfer signals from board-to-board

- Typical differential pair density between 16-32 pairs/10mm

[Tyco]
Connectors

- Important to maintain proper differential impedance through connector
- Crosstalk can be an issue in the connectors
Vias

- Used to connect PCB layers

- Made by drilling a hole through the board which is plated with copper
 - Pads connect to signal layers/traces
 - Clearance holes avoid power planes

- Expensive in terms of signal density and integrity
 - Consume multiple trace tracks
 - Typically lower impedance and create “stubs”
Impact of Via Stubs at Connectors

- **Legacy BP** has default straight vias
 - Creates severe nulls which kills signal integrity
- **Refined BP** has expensive backdrilled vias
PCB Trace Configurations

- Microstrips are signal traces on PCB outer surfaces
 - Trace is not enclosed and susceptible to cross-talk
- Striplines are sandwiched between two parallel ground planes
 - Has increased isolation

[Johnson]
Wire Models

- Resistance
- Capacitance
- Inductance
- Transmission line theory
Wire Resistance

- Wire resistance is determined by material resistivity, ρ, and geometry
- Causes signal loss and propagation delay

\[R = \frac{\rho l}{A} = \frac{\rho l}{wh} \]

\[R = \frac{\rho l}{A} = \frac{\rho l}{\pi r^2} \]
Wire Capacitance

- Wire capacitance is determined by dielectric permittivity, ε, and geometry
- Best to use lowest ε_r
 - Lower capacitance
 - Higher propagation velocity

\[
C = \frac{w \varepsilon}{s}
\]
\[
C = \frac{2\pi \varepsilon}{\log\left(\frac{r_2}{r_1}\right)}
\]
\[
C = \frac{\pi \varepsilon}{\log(s/r)}
\]
\[
C = \frac{w \varepsilon}{s} + \frac{2\pi \varepsilon}{\log(4s/h)}
\]
Wire Inductance

- Wire inductance is determined by material permeability, μ, and closed-loop geometry

- For wire in homogeneous medium

\[CL = \varepsilon \mu \]

- Generally $\mu = \mu_0 = 4\pi \times 10^{-7} \text{ H/m}$
Wire Models

- **Model Types**
 - Ideal
 - Lumped C, R, L
 - RC transmission line
 - LC transmission line
 - RLGC transmission line

- **Condition for LC or RLGC model (vs RC)**
 \[f_0 \geq \frac{R}{2\pi L} \]

<table>
<thead>
<tr>
<th>Wire</th>
<th>R</th>
<th>L</th>
<th>C</th>
<th>>f (LC wire)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWG24 Twisted Pair</td>
<td>0.08Ω/m</td>
<td>400nH/m</td>
<td>40pF/m</td>
<td>32kHz</td>
</tr>
<tr>
<td>PCB Trace</td>
<td>5Ω/m</td>
<td>300nH/m</td>
<td>100pF/m</td>
<td>2.7MHz</td>
</tr>
<tr>
<td>On-Chip Min. Width M6 (0.18µm CMOS node)</td>
<td>40kΩ/m</td>
<td>4µH/m</td>
<td>300pF/m</td>
<td>1.6GHz</td>
</tr>
</tbody>
</table>
RLGC Transmission Line Model

As \(dx \to 0 \)

1. \[
\frac{\partial V(x,t)}{\partial x} = -RI(x,t) - L \frac{\partial I(x,t)}{\partial t}
\]
2. \[
\frac{\partial I(x,t)}{\partial x} = -GV(x,t) - C \frac{\partial V(x,t)}{\partial t}
\]

General Transmission Line Equations
Time-Harmonic Transmission Line Eqs.

- Assuming a traveling sinusoidal wave with angular frequency, ω

\[
\frac{dV(x)}{dx} = -(R + j\omega L)I(x) \quad (3)
\]

\[
\frac{dI(x)}{dx} = -(G + j\omega C)V(x) \quad (4)
\]

- Differentiating (3) and plugging in (4) (and vice versa)

\[
\frac{d^2V(x)}{dx^2} = \gamma^2 V(x) \quad (5)
\]

\[
\frac{d^2I(x)}{dx^2} = \gamma^2 I(x) \quad (6)
\]

- where γ is the **propagation constant**

\[
\gamma = \alpha + j\beta = \sqrt{(R + j\omega L)(G + j\omega C)} \quad (m^{-1})
\]
Transmission Line Propagation Constant

- Solutions to the Time-Harmonic Line Equations:

\[V(x) = V_f(x) + V_r(x) = V_{f0}e^{-\gamma x} + V_{r0}e^{\gamma x} \]

\[I(x) = I_f(x) + I_r(x) = I_{f0}e^{-\gamma x} + I_{r0}e^{\gamma x} \]

where \(\gamma = \alpha + j\beta = \sqrt{(R + j\omega L)(G + j\omega C)} \) (m\(^{-1}\))

- What does the propagation constant tell us?
 - Real part (\(\alpha \)) determines attenuation/distance (Np/m)
 - Imaginary part (\(\beta \)) determines phase shift/distance (rad/m)
 - **Signal phase velocity**

\[\nu = \frac{\omega}{\beta} \text{ (m/s)} \]
Transmission Line Impedance, Z_0

- For an infinitely long line, the voltage/current ratio is Z_0.
- From time-harmonic transmission line eqs. (3) and (4):

$$Z_0 = \frac{V(x)}{I(x)} = \sqrt{\frac{R + j\omega L}{G + j\omega C}} \ (\Omega)$$

- Driving a line terminated by Z_0 is the same as driving an infinitely long line.

[Dally]
Lossless LC Transmission Lines

- If \(R_{dx} = G_{dx} = 0 \)
 \[
 \gamma = \alpha + j\beta = j\omega\sqrt{LC} \\
 \alpha = 0 \quad \text{No Loss!} \\
 \beta = \omega\sqrt{LC}
 \]

- Waves propagate w/o distortion
 - Velocity and impedance independent of frequency
 - Impedance is purely real

\[
\nu = \frac{\omega}{\beta} = \frac{1}{\sqrt{LC}} \\
Z_0 = \sqrt{\frac{L}{C}}
\]

\[\text{Distance } (Y - X)\]

\[\text{At point } X, \text{ step is still of size } V, \text{ but delayed}\]

\[\text{At point } Y, \text{ step is delayed even more}\]

\[\text{A step of } V \text{ volts propagates down the transmission line}\]

\[\text{Time delay } t_1 - t_0 = (Y - X)\sqrt{\frac{L}{C}}\]

[Johnson]
Low-Loss LRC Transmission Lines

- If $\frac{R}{\omega L}$ and $\frac{G}{\omega C} << 1$
- Behave similar to ideal LC transmission line, but ...
 - Experience resistive and dielectric loss
 - Frequency dependent propagation velocity results in dispersion
 - Fast step, followed by slow DC tail

\[
\gamma = \alpha + j\beta = \sqrt{(R + j\omega L)(G + j\omega C)}
\]

\[
\approx j\omega \sqrt{LC} \left(1 - j \frac{RC + GL}{\omega LC}\right)^{\frac{1}{2}}
\]

\[
\approx \frac{R}{2Z_0} + \frac{GZ_0}{2} + j\omega \sqrt{LC} \left[1 + \frac{1}{8} \left(\frac{R}{\omega L}\right)^2 + \frac{1}{8} \left(\frac{G}{\omega C}\right)^2\right]
\]

\[
= \alpha_R + \alpha_D + j\beta
\]

\[
\alpha_R \approx \frac{R}{2Z_0}
\]

\[
\alpha_D \approx \frac{GZ_0}{2}
\]

Resistive Loss

Dielectric Loss

\[
\beta \approx \omega \sqrt{LC} \left[1 + \frac{1}{8} \left(\frac{R}{\omega L}\right)^2 + \frac{1}{8} \left(\frac{G}{\omega C}\right)^2\right]
\]

\[
v \approx \left(\sqrt{LC} \left[1 + \frac{1}{8} \left(\frac{R}{\omega L}\right)^2 + \frac{1}{8} \left(\frac{G}{\omega C}\right)^2\right]\right)^{-1}
\]
Skin Effect (Resistive Loss)

- High-frequency current density falls off exponentially from conductor surface.
- Skin depth, δ, is where current falls by e^{-1} relative to full conductor:
 - Decreases proportional to $\sqrt{\text{frequency}}$.
- Relevant at critical frequency f_s where skin depth equals half conductor height (or radius):
 - Above f_s, resistance/loss increases proportional to $\sqrt{\text{frequency}}$.

\[
J = e^{-\frac{d}{\delta}} \\
\delta = \left(\frac{2\pi \mu \sigma}{\rho}\right)^{\frac{1}{2}}
\]

For rectangular conductor:

\[
f_s = \frac{\rho}{\pi \mu \left(\frac{h}{2}\right)^2} \\
R(f) = R_{DC} \left(\frac{f}{f_s}\right)^{\frac{1}{2}} \\
\alpha_R = \frac{R_{DC}}{2Z_0} \left(\frac{f}{f_s}\right)^{\frac{1}{2}}
\]
Skin Effect (Resistive Loss)

5-mil Stripguide
\[R_{DC} = 7\, \Omega/m, \quad f_s = 43\, MHz \]

30 AWG Pair
\[R_{DC} = 0.08\, \Omega/m, \quad f_s = 67\, kHz \]

\[\alpha_R = \frac{R_{DC}}{2Z_0} \left(\frac{f}{f_s} \right)^{\frac{1}{2}} \]
Dielectric Absorption (Loss)

- An alternating electric field causes dielectric atoms to rotate and absorb signal energy in the form of heat
- Dielectric loss is expressed in terms of the loss tangent
- Loss increases directly proportional to frequency

\[
\tan \delta_D = \frac{G}{\omega C}
\]

Table 3-4 Electrical Properties of PC Board Dielectrics

<table>
<thead>
<tr>
<th>Material</th>
<th>(\varepsilon_r)</th>
<th>(\tan \delta_p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Woven glass, epoxy resin ("FR-4")</td>
<td>4.7</td>
<td>0.035</td>
</tr>
<tr>
<td>Woven glass, polyimide resin</td>
<td>4.4</td>
<td>0.025</td>
</tr>
<tr>
<td>Woven glass, polyphenylene oxide resin (GETEK)</td>
<td>3.9</td>
<td>0.010</td>
</tr>
<tr>
<td>Woven glass, PTFE resin (Teflon)</td>
<td>2.55</td>
<td>0.005</td>
</tr>
<tr>
<td>Nonwoven glass, PTFE resin</td>
<td>2.25</td>
<td>0.001</td>
</tr>
</tbody>
</table>

\[
\alpha_D = \frac{GZ_0}{2} = \frac{2\pi f C \tan \delta_D \sqrt{L/C}}{2} = \pi f \tan \delta_D \sqrt{LC}
\]

[Dally]
Total Wire Loss

[Graph showing attenuation vs. frequency from 1 MHz to 6 GHz, with labels for Measured Attenuation, Calculated Attenuation, Dielectric Loss, and Conductor Loss.]

[Dally]
• With a Thevenin-equivalent model of the line:

Termination Current: \[I_T = \frac{2V_i}{Z_0 + Z_T} \]

• KCL at Termination:

\[I_f = \frac{V_i}{Z_0}, \quad I_r = I_f - I_T \]

\[I_r = \frac{V_i}{Z_0} - \frac{2V_i}{Z_T + Z_0} \]

\[I_r = \frac{V_i}{Z_0} \left(\frac{Z_T - Z_0}{Z_T + Z_0} \right) \]

Telegrapher’s Equation or Reflection Coefficient:

\[k_r = \frac{I_r}{I_f} = \frac{V_r}{V_i} = \frac{Z_T - Z_0}{Z_T + Z_0} \]
Termination Examples - Ideal

\[V_i = 1 \times \left(\frac{50}{50 + 50} \right) = 0.5V \]

\[k_{rT} = \frac{50 - 50}{50 + 50} = 0 \]

\[k_{rS} = \frac{50 - 50}{50 + 50} = 0 \]

\[R_S = 50\Omega \]
\[Z_0 = 50\Omega, \ t_d = 1\text{ns} \]
\[R_T = 50\Omega \]
Termination Examples - Open

\[V_i = 1V \left(\frac{50}{50 + 50} \right) = 0.5V \]

\[k_{rT} = \frac{\infty - 50}{\infty + 50} = +1 \]

\[k_{rS} = \frac{50 - 50}{50 + 50} = 0 \]

\[R_S = 50\Omega \]
\[Z_0 = 50\Omega, \quad t_d = 1\text{ns} \]
\[R_T \sim \infty \ (1\text{M}\Omega) \]

in (step begins at 1ns)
Termination Examples - Short

\[R_S = 50\Omega \]

\[Z_0 = 50\Omega, \ t_d = 1\text{ns} \]

\[R_T = 0\Omega \]

\[
V_i = 1V \left(\frac{50}{50 + 50} \right) = 0.5V
\]

\[
k_{rT} = \frac{0 - 50}{0 + 50} = -1
\]

\[
k_{rS} = \frac{50 - 50}{50 + 50} = 0
\]
Arbitrary Termination Example

\[R_S = 400 \Omega \]
\[Z_0 = 50 \Omega, \ t_d = 1 \text{ns} \]
\[R_T = 600 \Omega \]

\[V_i = 1V \left(\frac{50}{400 + 50} \right) = 0.111V \]

\[k_{rT} = \frac{600 - 50}{600 + 50} = 0.846 \]

\[k_{rS} = \frac{400 - 50}{400 + 50} = 0.778 \]
$R_S = 400 \Omega$

$Z_0 = 50 \Omega$, $t_d = 1$ns

$R_T = 600 \Omega$

in (step begins at 1ns)

Rings up to 0.6V

(DC voltage division)
Termination Reflection Patterns

- **RS = 25Ω, RT = 25Ω**
 - $kr_S < 0$ & $kr_T < 0$
 - Voltages Converge

- **RS = 25Ω, RT = 100Ω**
 - $kr_S < 0$ & $kr_T > 0$
 - Voltages Oscillate

- **RS = 100Ω, RT = 25Ω**
 - $kr_S > 0$ & $kr_T < 0$
 - Voltages Oscillate

- **RS = 100Ω, RT = 100Ω**
 - $kr_S > 0$ & $kr_T > 0$
 - Voltages Ring Up
Termination Schemes

• **No Termination**
 - Little to absorb line energy
 - Can generate oscillating waveform
 - Line must be **very short** relative to signal transition time
 - $n = 4 - 6$
 - Limited off-chip use

• **Source Termination**
 - Source output takes 2 steps up
 - Used in moderate speed point-to-point connections

\[
t_r > nT_{\text{round-trip}} = 2nl\sqrt{LC}
\]

\[
t_{\text{porch}} \approx 2l\sqrt{LC}
\]
Termination Schemes

- **Receiver Termination**
 - No reflection from receiver
 - Watch out for intermediate impedance discontinuities
 - Little to absorb reflections at driver

- **Double Termination**
 - Best configuration for min reflections
 - Reflections absorbed at both driver and receiver
 - Get half the swing relative to single termination
 - Most common termination scheme for high performance serial links
Differential Signaling

- Differential signaling advantages
 - Self-referenced
 - Common-mode noise rejection
 - Increased signal swing
 - Reduced self-induced power-supply noise

- Requires 2x the number of signaling pins relative to single-ended signaling
 - But, smaller ratio of supply/signal (return) pins
 - Total pin overhead is typically 1.3-1.8x (vs 2x)
Odd & Even Modes

• Even mode
 • When equal voltages drive both lines, only one mode propagates called even mode

• Odd mode
 • When equal in magnitude, but out of phase, voltages drive both lines, only one mode propagates called odd mode

• For a differential pair (odd mode), a virtual reference plane exists between the conductors that provides a continuous return current path
 • Electric field is perpendicular to the virtual plane
 • Magnetic field is tangent to the virtual plane
Balanced Transmission Lines

- Even (common) mode excitation
 - Effective $C = C_C$
 - Effective $L = L + M$

- Odd (differential) mode excitation
 - Effective $C = C_C + 2C_d$
 - Effective $L = L - M$

\[
Z_{DIFF} = 2Z_{odd}, \quad Z_{CM} = \frac{Z_{even}}{2}
\]

[Dally]
PI-Termination

Even Mode Equivalent

Odd Mode Equivalent

\[Z_{\text{even}} = R_1 \]

\[Z_{\text{odd}} = R_1 \parallel R_2/2 = Z_{\text{even}} \parallel R_2/2 \]

\[R_2 = 2 \left(\frac{Z_{\text{odd}} Z_{\text{even}}}{Z_{\text{even}} - Z_{\text{odd}}} \right) \]
T-Termination

\[Z_{even} = R_2 + 2R_1 \]

\[Z_{odd} = R_2 \]

\[R_1 = \frac{1}{2} \left(Z_{even} - Z_{odd} \right) \]
Next Time

- Channel modeling
 - Time domain reflectometer (TDR)
 - Network analysis