ECEN689: Special Topics in High-Speed Links Circuits and Systems
Spring 2010

Lecture 25: Clocking Architectures

Sam Palermo
Analog & Mixed-Signal Center
Texas A&M University
Announcements

- Project Preliminary Report #1 due April 16 (in class)
- Exam 2 is April 30
- Reading
 - Will post some clocking papers
Agenda

• Project Overview

• HW5 Discussion

• Clocking Architectures
HW5 Comparator Survey

![Bar graph showing the number of STU for SA, CML, Shinkle, and Goll]
HW5 Comparator Delay vs VDD

StrongArm

Shinkel

CML

Goll

[A. Amin]
HW5 Comparator ISF

StrongArm: 30ps

Shinkel: 20ps

CML: 60ps

Goll: 34ps
High-Speed Electrical Link System
Clocking Terminology

Synchronous
- Every chip gets same frequency AND phase
- Used in low-speed busses

Mesochronous
- Same frequency, but unknown phase
- Requires phase recovery circuitry
 - Can do with or without full CDR
- Used in fast memories, internal system interfaces, MAC/Packet interfaces

Plesiochronous
- Almost the same frequency, resulting in slowly drifting phase
- Requires CDR
- Widely used in high-speed links

Asynchronous
- No clocks at all
- Request/acknowledge handshake procedure
- Used in embedded systems, Unix, Linux
I/O Clocking Architectures

• Three basic I/O architectures
 • Common Clock (Synchronous)
 • Forward Clock (Source Synchronous)
 • Embedded Clock (Clock Recovery)

• These I/O architectures are used for varying applications that require different levels of I/O bandwidth

• A processor may have one or all of these I/O types

• Often the same circuitry can be used to emulate different I/O schemes for design reuse
Common Clock I/O Architecture

- Common in original computer systems
- Synchronous system
- Common bus clock controls chip-to-chip transfers
- Requires equal length routes to chips to minimize clock skew
- Data rates typically limited to \(\sim 100 \text{Mb/s} \)

[Krauter]
Common Clock I/O Cycle Time

Cycle time to meet setup time

$$\max(T_{clk-A} + T_{Aclk} + T_{drive} + T_{tof} + T_{receive} + T_{setup}) - \min(T_{Bclk} - T_{clk-B}) < T_{cycle}$$
Common Clock I/O Limitations

• Difficult to control clock skew and propagation delay

• Need to have tight control of absolute delay to meet a given cycle time

• Sensitive to delay variations in on-chip circuits and board routes

• Hard to compensate for delay variations due to low correlation between on-chip and off-chip delays

• While commonly used in on-chip communication, offers limited speed in I/O applications
Forward Clock I/O Architecture

- Common high-speed reference clock is forwarded from TX chip to RX chip
 - Mesochronous system
- Used in processor-memory interfaces and multi-processor communication
 - Intel QPI
 - Hypertransport
- Requires one extra clock channel
- “Coherent” clocking allows low-to-high frequency jitter tracking
- Need good clock receive amplifier as the forwarded clock is attenuated by the channel
Forward Clock I/O Limitations

- Clock skew can limited forward clock I/O performance
 - Driver strength and loading mismatches
 - Interconnect length mismatches

- Low pass channel causes jitter amplification

- Duty-Cycle variations of forwarded clock
Forward Clock I/O De-Skew

- Per-channel de-skew allows for significant data rate increases
- Sample clock adjusted to center clock on the incoming data eye
- Implementations
 - Delay-Locked Loop and Phase Interpolators
 - Injection-Locked Oscillators
- Phase Acquisition can be
 - BER based – no additional input phase samplers
 - Phase detector based implemented with additional input phase samplers periodically powered on
Forward Clock I/O Circuits

- TX PLL
- TX Clock Distribution
- Replica TX Clock Driver
- Channel
- Forward Clock Amplifier
- RX Clock Distribution
- De-Skew Circuit
 - DLL/PI
 - Injection-Locked Oscillator
Embedded Clock I/O Architecture

- Can be used in mesochronous or plesiochronous systems
- Clock frequency and optimum phase position are extracted from incoming data stream
- Phase detection continuously running
- CDR Implementations
 - Per-channel PLL-based
 - Dual-loop w/ Global PLL &
 - Local DLL/PI
 - Local Phase-Rotator PLLs
Embedded Clock I/O Limitations

- Jitter tracking limited by CDR bandwidth
 - Technology scaling allows CDRs with higher bandwidths which can achieve higher frequency jitter tracking

- Generally more hardware than forward clock implementations
 - Extra input phase samplers
Embedded Clock I/O Circuits

- TX PLL
- TX Clock Distribution
- CDR
 - Per-channel PLL-based
 - Dual-loop w/ Global PLL &
 - Local DLL/PI
 - Local Phase-Rotator PLLs
 - Global PLL requires RX clock distribution to individual channels
Next Time

- PLL