ECEN720: High-Speed Links
Circuits and Systems
Spring 2017

Lecture 11: Clocking Architectures & PLLs

Sam Palermo
Analog & Mixed-Signal Center
Texas A&M University
Announcements & Agenda

- Project
 - Email me your project choice by April 6
- Lab 6 Report due Apr. 10
- Clocking Architectures
- PLLs
 - Modeling
 - Noise transfer functions
References

- High-speed link clocking tutorial paper, PLL analysis paper, and PLL thesis posted on website
- Posted PLL models in project section
- Website has additional links on PLL and jitter tutorials
- Majority of today’s PLL material comes from Fischette tutorial and M. Mansuri’s PhD thesis (UCLA)
High-Speed Electrical Link System
Clocking Terminology

Synchronous
- Every chip gets same frequency AND phase
- Used in low-speed busses

Mesochronous
- Same frequency, but unknown phase
- Requires phase recovery circuitry
 - Can do with or without full CDR
- Used in fast memories, internal system interfaces, MAC/Packet interfaces

Plesiochronous
- Almost the same frequency, resulting in slowly drifting phase
- Requires CDR
- Widely used in high-speed links

Asynchronous
- No clocks at all
- Request/acknowledge handshake procedure
- Used in embedded systems, Unix, Linux
I/O Clocking Architectures

- Three basic I/O architectures
 - Common Clock (Synchronous)
 - Forward Clock (Source Synchronous)
 - Embedded Clock (Clock Recovery)

- These I/O architectures are used for varying applications that require different levels of I/O bandwidth

- A processor may have one or all of these I/O types

- Often the same circuitry can be used to emulate different I/O schemes for design reuse
Common Clock I/O Architecture

- Common in original computer systems
- Synchronous system by design (no active deskew)
- Common bus clock controls chip-to-chip transfers
- Requires equal length routes to chips to minimize clock skew
- Data rates typically limited to ~100Mb/s

[Krauter]
Common Clock I/O Cycle Time

Cycle time to meet setup time

\[
\max(T_{\text{clk-A}} + T_{\text{Aclk}} + T_{\text{drive}} + T_{\text{tof}} + T_{\text{receive}} + T_{\text{setup}}) - \min(T_{\text{Bclk}} - T_{\text{clk-B}}) < T_{\text{cycle}}
\]

[Image of a circuit diagram]

[Krauter]
Common Clock I/O Limitations

- Difficult to control clock skew and propagation delay
- Need to have tight control of absolute delay to meet a given cycle time
- Sensitive to delay variations in on-chip circuits and board routes
- Hard to compensate for delay variations due to low correlation between on-chip and off-chip delays
- While commonly used in on-chip communication, offers limited speed in I/O applications
Forward Clock I/O Architecture

- **Common high-speed reference clock** is forwarded from TX chip to RX chip
 - Mesochronous system
- **Used in processor-memory interfaces and multi-processor communication**
 - Intel QPI
 - Hypertransport
- **Requires one extra clock channel**
- “Coherent” clocking allows low-to-high frequency jitter tracking
- **Need good clock receive amplifier** as the forwarded clock is attenuated by the channel
Forward Clock I/O Limitations

- Clock skew can limited forward clock I/O performance
 - Driver strength and loading mismatches
 - Interconnect length mismatches

- Low pass channel causes jitter amplification

- Duty-Cycle variations of forwarded clock
Forward Clock I/O De-Skew

- Per-channel de-skew allows for significant data rate increases
- Sample clock adjusted to center clock on the incoming data eye

Implementations
- Delay-Locked Loop and Phase Interpolators
- Injection-Locked Oscillators

Phase Acquisition can be
- BER based – no additional input phase samplers
- Phase detector based implemented with additional input phase samplers periodically powered on
Forward Clock I/O Circuits

- TX PLL
- TX Clock Distribution
- Replica TX Clock Driver
- Channel
- Forward Clock Amplifier
- RX Clock Distribution
- De-Skew Circuit
 - DLL/PI
 - Injection-Locked Oscillator
Embedded Clock I/O Architecture

- Can be used in mesochronous or plesiochronous systems
- Clock frequency and optimum phase position are extracted from incoming data stream
- Phase detection continuously running
- CDR Implementations
 - Per-channel PLL-based
 - Dual-loop w/ Global PLL &
 - Local DLL/PI
 - Local Phase-Rotator PLLs
Embedded Clock I/O Limitations

- Jitter tracking limited by CDR bandwidth
 - Technology scaling allows CDRs with higher bandwidths which can achieve higher frequency jitter tracking
- Generally more hardware than forward clock implementations
 - Extra input phase samplers
Embedded Clock I/O Circuits

- TX PLL
- TX Clock Distribution
- CDR
 - Per-channel PLL-based
 - Dual-loop w/ Global PLL &
 - Local DLL/PI
 - Local Phase-Rotator PLLs
 - Global PLL requires RX clock distribution to individual channels
PLLs

- PLL modeling
- PLL noise transfer functions
A phase-locked loop (PLL) is a negative feedback system where an oscillator-generated signal is phase AND frequency locked to a reference signal.

\[F_{\text{out}} = N \cdot F_{\text{ref}} \]
PLL Applications

• PLLs applications
 • Frequency synthesis
 • Multiplying a 100MHz reference clock to 10GHz
 • Skew cancellation
 • Phase aligning an internal clock to an I/O clock
 • Clock recovery
 • Extract from incoming data stream the clock frequency and optimum phase of high-speed sampling clocks
 • Modulation/De-modulation
 • Wireless systems
 • Spread-spectrum clocking
Forward Clock I/O Circuits

- TX PLL
- TX Clock Distribution
- Replica TX Clock Driver
- Channel
- Forward Clock Amplifier
- RX Clock Distribution
- De-Skew Circuit
 - DLL/PI
 - Injection-Locked Oscillator
Embedded Clock I/O Circuits

- TX PLL
- TX Clock Distribution
- CDR
 - Per-channel PLL-based
 - Dual-loop w/ Global PLL &
 - Local DLL/PI
 - Local Phase-Rotator PLLs
 - Global PLL requires RX clock distribution to individual channels
Linear PLL Model

\[\phi_{\text{ref}} \rightarrow + \rightarrow \phi_e \rightarrow K_{PD} \rightarrow v_e \rightarrow F(s) \rightarrow v_c \rightarrow \frac{K_{VCO}}{s} \rightarrow \phi_{\text{out}} \]

Phase Detector

Loop Filter

VCO

Loop Divider
Charge-pump supplies current to loop filter capacitor which integrates it to produce the VCO control voltage.

For stability, a zero is added with the resistor which gives a proportional gain term.

\[V_{ctrl} = \frac{I_{CP}}{2\pi} \]

\[F(s) = \frac{V_{ctrl}}{s} \]
Understanding PLL Frequency Response

- Linear “small-signal” analysis is useful for understand PLL dynamics if
 - PLL is locked (or near lock)
 - Input phase deviation amplitude is small enough to maintain operation in lock range
- Frequency domain analysis can tell us how well the PLL tracks the input phase as it changes at a certain frequency
- PLL transfer function is different depending on which point in the loop the output is responding to

\[\frac{\Phi_{\text{out}}}{\Phi_{\text{ref}}} \quad \text{BW} \quad \log(\text{frequency}) \]

\[\frac{\Phi_{\text{out}}}{\Phi_{\text{vco}}} \quad \text{BW} \quad \log(\text{frequency}) \]

[Fischette]
PLL Noise Transfer Function

[Mansuri]
Input Noise Transfer Function

\[\frac{K_o}{s} \]

w/ a loop gain factor: \(K = \frac{I_{CP}K_{VCO}R}{2\pi N} \) (assumes \(K_{PD} = 1 \))

Input Phase Noise:

\[H_{n_{IN}}(s) = \frac{\phi_{out}}{\phi_{n_{IN}}} = \frac{NK\left(s + \frac{1}{RC}\right)}{s^2 + KS + \frac{K}{RC}} = \frac{N2\zeta \omega_n \left(s + \frac{\omega_n}{2\zeta}\right)}{s^2 + 2\zeta \omega_n s + \omega_n^2} \]

Voltage Noise on Input Clock Source:

\[T_{n_{IN}}(s) = \frac{\phi_{out}}{V_{n_{IN}}} = \left(\frac{\phi_{out}}{\phi_{n_{IN}}}\right) \left(\frac{K_o}{s}\right) = \frac{K_o NK\left(s + \frac{1}{RC}\right)}{s\left(s^2 + KS + \frac{K}{RC}\right)} \]
Input Noise Transfer Function

Input Phase Noise:
\[H_{\text{IN}}(s) = \frac{\phi_{\text{out}}}{\phi_{\text{IN}}} = \frac{NK\left(s + \frac{1}{RC}\right)}{s^2 + Ks + \frac{K}{RC}} = \frac{N2\zeta\omega_n\left(s + \frac{\omega_n}{2\zeta}\right)}{s^2 + 2\zeta\omega_n s + \omega_n^2} \]

Voltage Noise on Input Clock Source:
\[T_{\text{IN}}(s) = \frac{\phi_{\text{out}}}{\phi_{\text{IN}}} = \frac{\left(\frac{\phi_{\text{out}}}{\phi_{\text{IN}}}\right)}{K_o} = \frac{K_o NK\left(s + \frac{1}{RC}\right)}{s\left(s^2 + Ks + \frac{K}{RC}\right)} \]

Simulation Parameters
\[\omega_n = 2\pi \times 1MHz, \quad \zeta = 1, \quad \omega_{VCO} = 2\pi \times 10GHz \]
\[K_{PD} = \frac{10\mu A}{2\pi \text{ rad}}, \quad K_{VCO} = \frac{2\pi (1GHz)}{V}, \quad N = 1 \]
\[C = 253pF, \quad R = 1.26k\Omega \]
\[K_0 = \frac{2\pi (1MHz)}{V}, \quad K_{\text{delay}} = 10\frac{ps}{V}, \quad \omega_{buf} = \omega_{VCO} \]
VCO Noise Transfer Function

\[H_{n_{VCO}}(s) = \frac{\phi_{out}}{\phi_{n_{VCO}}} = \frac{s^2}{s^2 + Ks + \frac{K}{RC}} = \frac{s^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \]

VCO Phase Noise:

\[T_{n_{VCO}}(s) = \frac{\phi_{out}}{v_{n_{VCO}}} = \left(\frac{\phi_{out}}{\phi_{n_{VCO}}} \right) \left(\frac{K_{VCO}}{s} \right) = \frac{K_{VCO}s}{s^2 + Ks + \frac{K}{RC}} \]

Voltage Noise on VCO Inputs:

\[V_{n_{VCO}} \]

\[\phi_{n_{VCO}} \]

\[\phi_{out} \]

K_{VCO} is different if the input is at the \(V_{cntrl} \) input (K_{VCO}) or supply (K_{Vdd})
VCO Noise Transfer Function

\[VCO \text{ VCO Phase Noise: } H_{nVCO}(s) = \frac{\phi_{out}}{\phi_{nVCO}} = \frac{s^2}{s^2 + K_s + \frac{K}{RC}} = \frac{s^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \]

\[VCO \text{ Voltage Noise on VCO Inputs: } T_{nVCO}(s) = \frac{\phi_{out}}{v_{nVCO}} = \left(\frac{\phi_{out}}{\phi_{nVCO}} \right) \left(\frac{K_{VCO}}{s} \right) = \frac{K_{VCO}s}{s^2 + K_s + \frac{K}{RC}} \]

Simulation Parameters

\(\omega_n = 2\pi \times 1MHz, \ \zeta = 1, \ \omega_{VCO} = 2\pi \times 10GHz \)

\(K_{PD} = \frac{10 \mu A}{2\pi \text{ rad}}, \ K_{VCO} = \frac{2\pi(1GHz)}{V}, \ N = 1 \)

\(C = 253\ pF, \ R = 1.26k\Omega \)

\(K_0 = \frac{2\pi(1MHz)}{V}, \ K_{delay} = 10\frac{ps}{V}, \ \omega_{buf} = \omega_{VCO} \)
Clock Buffer Noise Transfer Function

Output Phase Noise:

\[H_{n_{buf}}(s) = \frac{\phi_{out}}{\phi_{n_{buf}}} = \frac{s^2}{s^2 + Ks + \frac{K}{RC}} = \frac{s^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \]

Voltage Noise on Buffer Inputs:

\[T_{n_{buf}}(s) = \frac{\phi_{out}}{\phi_{n_{buf}}} = \left(\frac{\phi_{out}}{\phi_{n_{buf}}} \right) \left(\frac{K_{delay} \omega_{VCO}}{s + 1} \right) = \left(\frac{K_{delay} \omega_{VCO}}{\frac{s}{\omega_{buf}} + 1} \right) \left(\frac{s^2}{s^2 + Ks + \frac{K}{RC}} \right) \approx \frac{K_{delay} \omega_{VCO}s^2}{s^2 + Ks + \frac{K}{RC}} \]

\[K_{delay} \text{ units} = (s/V) \]
Clock Buffer Noise Transfer Function

Output Phase Noise:

\[H_{\text{buf}}(s) = \frac{\phi_{\text{out}}}{\phi_{\text{buf}}} = \frac{s^2}{s^2 + Ks + \frac{K}{RC}} = \frac{s^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \]

Voltage Noise on Buffer Inputs:

\[T_{\text{buf}}(s) = \frac{\phi_{\text{out}}}{\phi_{\text{buf}}} = \left(\frac{s}{\omega_{\text{buf}}} + 1 \right) \left(\frac{K_{\text{delay}}\omega_{\text{VCO}}}{s + \omega_{\text{buf}}} \right) = \left(\frac{s}{\omega_{\text{buf}}} + 1 \right) \left(\frac{K_{\text{delay}}\omega_{\text{VCO}}}{s + \omega_{\text{buf}}} \right) \frac{s^2}{s^2 + Ks + \frac{K}{RC}} \approx \frac{K_{\text{delay}}\omega_{\text{VCO}}s^2}{s^2 + Ks + \frac{K}{RC}} \]

Simulation Parameters

\[\omega_n = 2\pi \times 1MHz, \quad \zeta = 1, \quad \omega_{\text{VCO}} = 2\pi \times 10GHz \]

\[K_{\text{PD}} = \frac{10 \mu A}{2\pi \text{ rad}}, \quad K_{\text{VCO}} = \frac{2\pi (1GHz)}{V}, \quad N = 1 \]

\[C = 253 pF, \quad R = 1.26k\Omega \]

\[K_0 = \frac{2\pi (1MHz)}{V}, \quad K_{\text{delay}} = 10 \frac{ps}{V}, \quad \omega_{\text{buf}} = \omega_{\text{VCO}} \]
PLL Noise Transfer Function Take-Away Points

- The way a PLL shapes phase noise depends on where the noise is introduced in the loop.
- Optimizing the loop bandwidth for one noise source may enhance other noise sources.
- Generally, the PLL low-pass shapes input phase noise, band-pass shapes VCO input voltage noise, and high-pass shapes VCO/clock buffer output phase noise.
Oscillator Noise

\[V(t) \]

\[\Phi(t) \]

\[\omega(t) \]

\[t \]

Jitter

PHASE NOISE

[McNeill]
Oscillator Phase Noise Model

Leeson’s Model: \[L(\Delta f) = 10\log \left(\frac{2FkT}{P_{sig}} \left(1 + \left(\frac{1}{2Q} \frac{f_o}{\Delta f} \right)^2 \right) \left(1 + \frac{\Delta f_{1/f^3}}{|\Delta f|} \right) \right) \] (dBc/Hz)

For improved model see Hajimiri papers

[Perrott]
Open-Loop VCO Jitter

- Measure distribution of clock threshold crossings
- Plot σ as a function of delay ΔT

[McNeill]
Open-Loop VCO Jitter

- Jitter σ is proportional to $\sqrt{\Delta T}$
- κ is VCO time domain figure of merit

$$\sigma_{\Delta T(OL)}(\Delta T) \approx \kappa \sqrt{\Delta T}$$
VCO in Closed-Loop PLL Jitter

- PLL limits σ for delays longer than loop bandwidth τ_L

\[\tau_L = \frac{1}{2\pi f_L} \]
Generally, we care about the jitter w.r.t. the ref. clock (σ_x)

However, may be easier to measure w.r.t. delayed version of output clk
 - Due to noise on both edges, this will be increased by a sqrt(2) factor relative to the reference clock-referred jitter
Converting Phase Noise to Jitter

- RMS jitter for ΔT accumulation
 \[\sigma_{\Delta T}^2 = \frac{8}{\omega_o^2} \int_0^\infty S_\phi(f) \sin^2(\pi f \Delta T) \, df \]

- As ΔT goes to ∞
 \[\sigma_T^2 = \frac{2}{\omega_o^2} R_\phi(0) = \frac{4}{\omega_o^2} \int_0^\infty S_\phi(f) \, df \]

- Integration range depends on application bandwidth
 - f_{min} set by standard
 - Ex. Assumed CDR tracking bandwidth
 - Usually stop integration at $f_o/2$ or f_o due to measurement limitations and aliasing components

[Source: Mansuri]
PLL Linear Phase Model

\[\theta_{\text{out}}(s) \]

\[\theta_{\text{in}}(s) \]

\[20\log_{10} | \theta_{\text{out}}(s) / \theta_{\text{in}}(s) | \]

\[1.47 \text{Mrad/s} \]
PLL Linear Phase Model: Frequency Step Response

\[\theta_{\text{ref}}(s) = \text{Frequency Step Input:} \ \Delta \omega \ \text{s}^{-1} \]

No Cycle Slips Observed with Linear Model

VCO Control Transient Response of Multi-Band PLL

Frequency Step Input: \(\theta_{\text{ref}}(s) = \frac{\Delta \omega}{s} \) Mrad/sec

\(\frac{\Delta S10}{\Delta S} \) Mrad/sec

VCO Control Voltage (V)

No Cycle Slips Observed with Linear Model
PLL Behavioral Model

- Written in SpectreHDL
- Also look at CppSim: http://www.cppsim.com/

```spectre
// Multi-Band Phase Locked Loop Frequency Synthesizer Macromodel
// Main Spectre File
// Samuel Palermo
simulator lang=spectre
include "~/home/samuel/research/pll/macromodels/pll/macromodels/lpf/lpf.d" ahdl include "~/home/samuel/research/pll/macromodels/vco/vco.d"

// Power Supply
vdd dd 0 vsource dc=1

// Reference Signal
xref 0 control fref reference
vcontrol control 0 vsource type=pwl wave=[0 0.64 1 u 0.64]

// Digital Tri-State Phase/Frequency Comparator
xdig_pfd 0 dd fref fvco up upbar down downbar dc 0

// Charge Pump
iup dd 1 isource dc=25u
idown 2 0 isource dc=25u
gup 1 vd up 0 relay vt1=0 vt2=1 ropen=100M rclosed=1m
gupbar 1 upbar 0 relay vt1=0 vt2=1 ropen=100M rclosed=1m
gdown vd 2 down 0 relay vt1=0 vt2=1 ropen=100M rclosed=1m
gdownbar dd 2 downbar 0 relay vt1=0 vt2=1 ropen=100M rclosed=1m

// Loop Filter
xfilt 0 vd lpf
gvgnvld 0 vd gnd 0 relay vt1=0 vt2=1 ropen=100M rclosed=10

// Voltage Controlled Oscillator
/xvco vd out vco (gain=400e6 fc=256e6)
xvco 0 vd out nv_temp vd_gnd
+ switch vco (mu=0.8 dl=-0.8 gain=400e6 fc=256e6)

// Divider
xdivider 0 out fvco buffer n_temp divider (divisor=32)
```

```spectre
// Digital Phase Frequency Detector Macromodel
// Samuel Palermo
subckt dig_pfd (gnd dd fref fvco up upbar down downbar)

// D Flip Flop Macromodel
// Samuel Palermo
module dff (gnd, D, CLK, Q, QBAR, R) ()
```

```spectre
real Q_temp;real QBAR_temp;
initial {
  Q_temp=0;
  QBAR_temp=1;
}
```

```spectre
analog {
  if ($threshold (V(CLK, gnd)-1, 1)) {
    if (V(D, gnd)==1) {
      Q_temp=1;
      QBAR_temp=0;
    } else {
      Q_temp=0;
      QBAR_temp=1;
    }
  } if (V(R, gnd)==0) {
    Q_temp=0;
    QBAR_temp=1;
  }
```
PLL Frequency Step Response: Linear vs Behavioral Model

Frequency Step Input: \[\theta_{in}(s) = \frac{\Delta \omega}{\Delta \tau^2} = \frac{1510 \text{ Mrad/sec}}{32 \text{s}^2} \]

No Cycle Slips Observed with Linear Model

Behavioral Macromodel of the PLL
Frequency Step Input of 2.5MHz

Cycle Slips
Next Time

• CDRs

• The following slides provide more details on PLL circuits. This 620 material may be useful for the project, but won’t be covered in detail on Exam 2.
Open-Loop PLL Transfer Function

\[H_{\text{open}}(s) = K_{\text{PFD}} \cdot \frac{I_{\text{CP}}}{2\pi} \cdot F(s) \cdot K_{VCO}/s \]

ignoring \(C_1 \):
\[H_{\text{open}}(s) = K_{\text{PFD}} \cdot \frac{I_{\text{CP}}}{2\pi \cdot C_{\text{CP}}} \cdot (1 + RC_{\text{CP}s}) \cdot \frac{K_{VCO}}{s^2} \quad (2^{\text{nd}} \text{ order}) \]

with \(C_1 \):
\[H_{\text{open}}(s) = K_{\text{PFD}} \cdot \frac{I_{\text{CP}}}{2\pi \cdot (C_{\text{CP}} + C_1)} \cdot (1 + RC_{\text{CP}s}) \cdot \frac{K_{VCO}}{s^2 \cdot [1 + R(C_{\text{CP}}|C_1)s]} \quad (3^{\text{rd}} \text{ order}) \]
Open-Loop PLL Transfer Function

- **w/o C_1 (2^{nd} order)**
 - $|H_{open}(s)| \cdot 1/N$
 - 40dB/dec
 - 20dB/dec
 - 0dB
 - ω_z
 - ω_c

- **with C_1 (3^{rd} order)**
 - $|H_{open}(s)| \cdot 1/N$
 - 40dB/dec
 - 20dB/dec
 - 0dB
 - ω_z
 - ω_c
 - ω_{p3}

[Source: Mansuri]
Closed-Loop PLL Transfer Function

\[\frac{\phi_{\text{out}}(s)}{\phi_{\text{in}}(s)} = H_{\text{closed}}(s) = \frac{H_{\text{open}}(s)}{1 + H_{\text{open}}(s) \cdot 1/N} \]

ignoring \(C_1:\)
\[\frac{\phi_{\text{out}}(s)}{\phi_{\text{in}}(s)} = \frac{K_{\text{Loop}} \cdot (1 + RC_{CP}s)}{s^2 + (K_{\text{Loop}}/N)RC_{CP}s + K_{\text{Loop}}/N} \]

\[K_{\text{Loop}} = K_{\text{PFD}} \cdot K_{\text{VCO}} \cdot I_{CP}/(2\pi C_{CP}) \]
PLL Natural Frequency and Damping Factor

\[\frac{\phi_{out}(s)}{\phi_{in}} = \frac{K_{Loop} \cdot (1 + RC_{CP}s)}{s^2 + (K_{Loop}/N)RC_{CP}s + K_{Loop}/N} \]

Standard 2\(^{nd}\)-order denominator: \(s^2 + 2\zeta\omega_n s + \omega_n^2 \)

Natural Frequency: \(\omega_n = \sqrt{\frac{K_{Loop}}{N}} \)

Damping Factor: \(\zeta = \frac{\omega_n}{2 \cdot \omega_n} \)

Loop Bandwidth: \(\omega_{3dB} = \omega_n \left(a + \sqrt{a^2 + 1} \right)^{1/2} \)

\[a = 2\zeta^2 + 1 - \frac{\omega_n N}{K_{PD}K_{VCO}} \left(4\zeta - \frac{\omega_n N}{K_{PD}K_{VCO}} \right) \]
Damping Factor Impact

- If damping factor is too low, frequency peaking occurs
 - Damping factor ~1 is usually preferred
- Excessively high damping also causes peaking
 - Need 3rd order model to observe this
Damping Factor Impact

- Peaking in frequency domain leads to ringing in the time domain
Charge-Pump PLL Circuits

- Phase Detector
- Charge-Pump
- Loop Filter
- VCO
- Divider
Phase Detector

- Detects phase difference between feedback clock and reference clock
- The loop filter will filter the phase detector output, thus to characterize phase detector gain, extract average output voltage (or current for charge-pump PLLs)

\[
\text{avg}\{V_e(t)\} = K_{PD} \Delta \phi
\]
Analog Multiplier Phase Detector

\[A_1 \cos \omega_1 t \]

\[A_2 \cos(\omega_2 t + \Delta \phi) \]

\[\alpha \text{ is mixer gain} \]

- If \(\omega_1 = \omega_2 \) and filtering out high-frequency term

\[\overline{y(t)} = \frac{\alpha A_1 A_2}{2} \cos \Delta \phi \]

- Near \(\Delta \phi \) lock region of \(\pi/2 \):

\[\overline{y(t)} \approx \frac{\alpha A_1 A_2}{2} \left(\frac{\pi}{2} - \Delta \phi \right) \]

\[K_{PD} = -\frac{\alpha A_1 A_2}{2} \]

[Razavi]
XOR Phase Detector

- Sensitive to clock duty cycle

[Source: Razavi]
XOR Phase Detector

Width is same for both leading and lagging phase difference!
Cycle Slipping

- If there is a frequency difference between the input reference and PLL feedback signals, the phase detector can jump between regions of different gain.
 - PLL is no longer acting as a linear system.

![Diagram showing phase detector operation with positive and negative feedback](image)

[Perrott]
Cycle Slipping

- If frequency difference is too large the PLL may not lock.
Phase Frequency Detector (PFD)

- Phase Frequency Detector allows for wide frequency locking range, potentially entire VCO tuning range.
- 3-stage operation with UP and DOWN outputs.
- Edge-triggered results in duty cycle insensitivity.
PFD Transfer Characteristic

UP=1 & DN=-1

- Constant slope and polarity asymmetry about zero phase allows for wide frequency range operation
PFD Deadzone

- If phase error is small, then short output pulses are produced by PFD.
- Cannot effectively propagate these pulses to switch charge pump.
- Results in phase detector “dead zone” which causes low loop gain and increased jitter.
- Solution is to add delay in PFD reset path to force a minimum UP and DOWN pulse length.

![Diagram of PFD and Deadzone](image)

[Fischette]
PFD Operation

Ref

Cycle Slip

FbClk

Min. Pulse Width

GoFaster

GoSlower

Vctl

[Fischette]
Charge-Pump PLL Circuits

- Phase Detector
- Charge-Pump
- Loop Filter
- VCO
- Divider
• Converts PFD output signals to charge
• Charge is proportional to PFD pulse widths

PFD-CP Gain: \(\left(\frac{1}{2\pi} \right) I_{CP} \)
Simple Charge Pump

• Issues
 • Switch resistance can impact UP/DN current matching as a function of V_{ctrl}
 • Clock feedthrough and charge injection from switches onto V_{ctrl}
 • Charge sharing between current source drain nodes' capacitance and V_{ctrl}
Charge Pump Mismatch

- PLL will lock with static phase error
- Extra “ripple” on Vctrl
 - Results in frequency domain spurs at the reference clock frequency offset from the carrier

\[\bar{Q}_A \]
\[Q_{B\Delta} \]
\[I_{D3} \]
\[|I_{D4}| \]
Net Current

\[V_{cont} \]

\[t \]

\[t \]

[65] Razavi

Ideal locked condition, but CP mismatch

Actual locked condition w/ CP mismatch
Charge Pump w/ Improved Matching

- Amplifier keeps current source Vds voltages constant resulting in reduced transient current mismatch

[Young J SSC 1992]
Charge Pump w/ Reversed Switches

- Swapping switches reduces charge injection
 - MOS caps (Md1-4) provide extra charge injection cancellation

- Helper transistors Mx and My quickly turn-off current source

- Dummy brand helps to match PFD loading
Charge-Pump PLL Circuits

- Phase Detector
- Charge-Pump
- Loop Filter
- VCO
- Divider
Loop Filter

- Lowpass filter extracts average of phase detector error pulses

![Diagram of loop filter with VDD, VSS, charging, discharging, C1, C2, R, and F(s)]
Loop Filter Transfer Function

- Neglecting secondary capacitor, C_2

\[F(s) = \frac{V_c(s)}{I_e(s)} = \frac{R \left(s + \frac{1}{RC_1} \right)}{s} \]
Loop Filter Transfer Function

- With secondary capacitor, C_2

\[
Z(s) = \frac{1}{C_2} \left(\frac{s + \frac{1}{RC_1}}{s(s(C_1 + C_2) + \frac{1}{RC_1}} \right)
\]

VCO Control Voltage

C_1 R C_2

Layout Extracted Loop Filter Frequency Response

- Pole at 0Hz
- Zero at $f = \frac{1}{2\pi RC_1} = 80.5\text{kHz}$
- Second Pole at $f = \frac{C_1 + C_2}{2\pi RC_1 C_2} = 915\text{kHz}$
Why have C2?

- Secondary capacitor smoothes control voltage ripple
- Can’t make too big or loop will go unstable
 - \(C_2 < \frac{C_1}{10} \) for stability
 - \(C_2 > \frac{C_1}{50} \) for low jitter
Filter Capacitors

- To minimize area, we would like to use highest density caps

- Thin oxide MOS cap gate leakage can be an issue
 - Similar to adding a non-linear parallel resistor to the capacitor
 - Leakage is voltage and temperature dependent
 - Will result in excess phase noise and spurs

- Metal caps or thick oxide caps are a better choice
 - Trade-off is area

- Metal cap density can be < 1/10 thin oxide caps

- Filter cap frequency response can be relatively low, as PLL loop bandwidths are typically 1-50MHz
Charge-Pump PLL Circuits

- Phase Detector
- Charge-Pump
- Loop Filter
- VCO
- Divider
Voltage-Controlled Oscillator

- Time-domain phase relationship

\[
\phi_{out}(t) = \int \Delta \omega_{out}(t) \, dt = K_{VCO} \int v_c(t) \, dt
\]

\[
\omega_{out}(t) = \omega_0 + \Delta \omega_{out}(t) = \omega_0 + K_{VCO} v_c(t)
\]
Voltage-Controlled Oscillators (VCO)

- Ring Oscillator
 - Easy to integrate
 - Wide tuning range (5x)
 - Higher phase noise

- LC Oscillator
 - Large area
 - Narrow tuning range (20-30%)
 - Lower phase noise
Barkhausen’s Oscillation Criteria

Closed-loop transfer function: \[
\frac{H(j\omega)}{1 - H(j\omega)}
\]

- Sustained oscillation occurs if \(H(j\omega) = 1 \)

- 2 conditions:
 - Gain = 1 at oscillation frequency \(\omega_0 \)
 - Total phase shift around loop is \(n360^\circ \) at oscillation frequency \(\omega_0 \)
Ring Oscillator Example

\[H(s) = -\frac{A_0^3}{(1 + \frac{s}{\omega_0})^3} \]

\[\omega_{osc} = \sqrt{3}\omega_0 \]

\[\tan^{-1} \frac{\omega_{osc}}{\omega_o} = 60^\circ \]

\[\frac{V_{out}(s)}{V_{in}(s)} = \frac{-A_0^3}{(1 + \frac{s}{\omega_0})^3} = \frac{-A_0^3}{(1 + \frac{s}{\omega_0})^3 + A_0^3} \]

\[\left[1 + \left(\frac{\omega_{osc}}{\omega_o} \right)^2 \right]^{\frac{3}{2}} = 1 \]

\[A_0 = 2 \]
Ring Oscillator Example

- 4-stage oscillator
 - \(A_0 = \sqrt{2} \)
 - Phase shift = 45°

- Easier to make a larger-stage oscillator oscillate, as it requires less gain and phase shift per stage

\[
H(s) = -\frac{A_0^3}{\left(1 + \frac{s}{\omega_0}\right)^3} \quad \omega_{osc} = \sqrt{3}\omega_0 \quad \tan^{-1}\frac{\omega_{osc}}{\omega_0} = 60°
\]

\[
\frac{V_{out}(s)}{V_{in}(s)} = -\frac{A_0^3}{\left(1 + \frac{s}{\omega_0}\right)^3} = \frac{-A_0^3}{\left(1 + \frac{s}{\omega_0}\right)^3 + A_0^3}
\]

\[
\left[1 + \left(\frac{\omega_{osc}}{\omega_0}\right)^2\right]^3 = 1
\]

\[A_0 = 2\]
LC Oscillator Example

- Oscillation phase shift condition satisfied at the frequency when the LC (and R) tank load displays a purely real impedance, i.e. 0° phase shift

LC tank impedance

$$Z_{eq}(s) = \frac{R_s + L_1 s}{1 + L_1 C_1 s^2 + R_s C_1 s}$$

$$|Z_{eq}(s = j\omega)|^2 = \frac{R_s^2 + L_1^2 \omega^2}{\left(1 - L_1 C_1 \omega^2\right)^2 + R_s^2 C_1^2 \omega^2}$$
LC Oscillator Example

- Transforming the series loss resistor of the inductor to an equivalent parallel resistance

\[
L_P = L_1 \left(1 + \frac{R_S^2}{L_1 \omega^2}\right), \quad C_P = C_1, \quad R_P \approx \frac{L_1^2 \omega^2}{R_S}
\]

\[
\omega_1 = \frac{1}{\sqrt{L_P C_P}}
\]

[Razavi]
LC Oscillator Example

- Phase condition satisfied at
- Gain condition satisfied when \((g_m R_P)^2 \geq 1 \)
- Can also view this circuit as a parallel combination of a tank with loss resistance \(2R_P \) and negative resistance of \(2/g_m \)
- Oscillation is satisfied when
 \[
 \frac{1}{g_m} \leq R_P
 \]
Supply-Tuned Ring Oscillator

\[T_{VCO} = 2nT_D \approx \frac{2nC_{\text{stage}}}{\beta(V_c - V_{th})} \]

\[K_{VCO} = \frac{\partial f_{VCO}}{\partial V_c} = \frac{\beta}{2nC_{\text{stage}}} \]
Current-Starved Ring Oscillator

Current-starved VCO.

[Sanchez]
Capacitive-Tuned Ring Oscillator

\[
C_{eff} = \frac{C}{1 + sCR}
\]
Symmetric Load Ring Oscillator

- Symmetric load provides frequency tuning at excellent supply noise rejection
- See Maneatis papers for self-biased techniques to obtain constant damping factor and loop bandwidth (% of ref clk)
LC Oscillator

- A variable capacitor (varactor) is often used to adjust oscillation frequency.

- Total capacitance includes both tuning capacitance and fixed capacitances which reduce the tuning range.

\[\omega_{osc} = \frac{1}{\sqrt{L_p C_p}} = \frac{1}{\sqrt{L_p (C_{tune} + C_{fixed})}} \]
Varactors

- **pn junction varactor**
 - Avoid forward bias region to prevent oscillator nonlinearity

- **MOS varactor**
 - Accumulation-mode devices have better Q than inversion-mode
Charge-Pump PLL Circuits

- Phase Detector
- Charge-Pump
- Loop Filter
- VCO
- Divider
Loop Divider

\[\phi_{\text{out}}(t) \rightarrow \frac{1}{N} \rightarrow \phi_{\text{fb}}(t) \]

- Time-domain model

\[\omega_{\text{fb}}(t) = \frac{1}{N} \omega_{\text{out}}(t) \]

\[\phi_{\text{fb}}(t) = \int \frac{1}{N} \omega_{\text{out}}(t) dt = \frac{1}{N} \phi_{\text{out}}(t) \]
Basic Divide-by-2

- Divide-by-2 can be realized by a flip-flip in “negative feedback”
- Divider should operate correctly up to the maximum output clock frequency of interest PLUS some margin
Divide-by-2 with TSPC FF

True Single Phase Clock Flip-Flop

- **Advantages**
 - Reasonably fast, compact size, and no static power
 - Requires only one phase of the clock

- **Disadvantages**
 - Signal needs to propagate through three gates per input cycle
 - Need full swing CMOS inputs
 - Dynamic flip-flop may have issues at very low frequency operation (test mode) depending on process leakage
Divide-by-2 with CML FF

- Advantages
 - Signal only propagates through two CML gates per input cycle
 - Accepts CML input levels

- Disadvantages
 - Larger size and dissipates static power
 - Requires differential input
 - Need tail current biasing

- Additional speedup (>50%) can be achieved with shunt peaking inductors
Binary Dividers: Asynchronous vs Synchronous

Asynchronous Divider

- Advantages
 - Each stage runs at lower frequency, resulting in reduced power
 - Reduced high frequency clock loading

- Disadvantage
 - Jitter accumulation

Synchronous Divider

- Advantage
 - Reduced jitter

- Disadvantage
 - All flip-flops work at maximum frequency, resulting in high power
 - Large loading on high frequency clock

[Perrott]
Jitter in Asynchronous vs Synchronous Dividers

Asynchronous

- Jitter accumulates with the clock-to-Q delays through the divider
- Extra divider delay can also degrade PLL phase margin

Synchronous

- Divider output is “sampled” with high frequency clock
- Jitter on divider clock is similar to VCO output
- Minimal divider delay

[Perrott]
Dual Modulus Prescalers

\[\div 2/3 \]

\[\div 15/16 \]

MC = 0 \rightarrow \div 3
MC = 1 \rightarrow \div 2

Synchronous \div 3/4

Asynchronous \div 4

- For /15, first prescaler circuit divides by 3 once and 4 three times during the 15 cycles

[Razavi]
Injection-Locked Frequency Dividers

LC-oscillator type (1/2)

\[V_O = V_O \cos(\omega_0 t + \varphi) \]

\[i_I = I_I \cos(2\omega_0 t) + I_{DC} \]

- Superharmonic injection-locked oscillators (ILOs) can realize frequency dividers
- Faster and lower power than flip-flop based dividers
- Injection locking range can be limited

[Verma JSSC 2003, Rategh JSSC 1999]

Ring-oscillator type (1/3)

[Lo CI CC 2009]
Example PLL Design Procedure

• Design procedure for a 100-300MHz frequency synthesizer

• Step 1 – Determine VCO Tuning Range
 • Needs to be at least the output frequency range plus some margin (10-20%) dependent on PVT tolerance

 \[\text{VCO Tuning Range} = 100 - 300\text{MHz} \]

 • *Note if you want the frequency extremes (100 or 300MHz) you probably want to add some margin here

• Step 2 – Determine Loop Division Ratio, N
 • This is a function of what reference clocks you have access to, loop bandwidth, dominant noise sources

 \[N = 32 \]

• Step 3 – Determine Damping Factor
 • Damping factors between 0.5 and 2 are reasonable, with 0.7 or 1 commonly chosen

 \[\zeta = \frac{1}{\sqrt{2}} \approx 0.707 \]
Example PLL Design Procedure

• Step 4 – Determine natural frequency, ω_n
 • This is a function of the desired loop bandwidth and also the damping factor
 • **Maximum loop bandwidth should be less than $1/10$th the input reference clock for the loop to act as a continuous-time system**

 Lowest Input Reference Frequency $= \frac{100\text{MHz}}{32} = 3.125\text{MHz}$

• Set the loop bandwidth with some margin - 75% of max value
 $$\omega_{3dB} = (0.75)(2\pi)312.5\text{kHz} = 1.47 \text{Mrad/s}$$

• For a damping factor of 0.707
 $$\omega_n = \frac{\omega_{3dB}}{2.06} = \frac{1.47 \text{Mrad/s}}{2.06} = 714 \text{krad/s}$$
Example PLL Design Procedure

- **Step 5 – Determine K_{vCO}**
 - This is a function of the VCO and charge pump operating voltage range
 - Here I use a combination of discrete tuning caps, resulting in multiple frequency bands over the total frequency range

- **Step 6 – Determine Charge Pump Current & Filter Cap**

 Set $I = 25 \mu A$

 $$C_1 = \frac{(25 \mu A) \left(\frac{255 \text{Mrad}}{sV} \right)}{2\pi (32) \left(\frac{714 \text{krad}}{s} \right)^2} = 62.2 \text{ pF}$$

- **Step 7 – Determine Filter R and Secondary Cap**

 $$R = \frac{\omega_n}{\omega_n C_1} = \frac{2(0.707)}{(714 \text{krad/s}) (62.2 \text{ pF})} = 31.8 \text{ k}\Omega$$

 $$C_2 < \frac{C_1}{10} = 6.22 \text{ pF} \Rightarrow C_2 = 6 \text{ pF}$$