Announcements & Agenda

• Reading
 • g_m/I_D paper and book reference on website
 • Material is only supplementary reference
 • Razavi Chapter 5 (Current Mirrors)

• Technology characterization for design
• Table-based (g_m/I_D) design example
• Adapted from Prof. B. Murmann (Stanford) notes
How to Design with Modern Sub-Micron (Nanometer) Transistors?

- Hand calculations with square-law model can deviate significantly from actual device performance
 - However, advanced model equations are too tedious for design

- Tempts designers to dive straight to simulation with little understanding on circuit performance trade-offs
 - “Spice Monkey” approach

- How can we accurately design when hand analysis models are way off?

- Employ a design methodology which leverages characterization data from BSIM simulations
The Problem

Specifications

Square Law → Hand Calculations

BSIM → Circuit

Spice

Results

[Murmann]
The Solution

BSIM → Spice → Design Charts → Hand Calculations

Specifications

Circuit

BSIM → Spice

Results

[Murmann]
Technology Characterization for Design

- Generate data for the following over a reasonable range of g_m/I_D and channel lengths
 - Transit frequency (f_T)
 - Intrinsic gain (g_m/g_{ds})
 - Current density (I_D/W)
- Also useful is extrinsic capacitor ratios
 - C_{gd}/C_{gg} and C_{dd}/C_{gg}
- Parameters are (to first order) independent of transistor width, which enables “normalized design”
- Do design hand calculations using the generated technology data
- Still need to understand how the circuit operates for an efficient design!!!
These plots tell us how much transconductance (g_m) we can get for a given current (I_D).

- The transistor is a more efficient transconductor at low overdrive voltages.
- A main trade-off will be the transistor frequency response (f_T).
- We will use g_m/I_D as the reference axis to compare other transistor parameters.
Intrinsic Transistor Gain (gm/go)

These plots tell us how much intrinsic transistor gain we have. The transistor has higher intrinsic gain at lower overdrive values due to the output resistance decreasing faster than the transconductance increases at higher current levels. Plotted vs gm/ID shows that after a certain minimum level, the transistor gain is somewhat flat.
The transit frequency is defined as the frequency when the transistor small-signal current gain goes to unity with the source and drain at AC grounds.

Overall, the ratio of g_m to C_{gg} comes up often in analog circuits, and is a good metric to compare the device frequency response (speed).

Transistor f_T increases with overdrive voltage and high f_T values demand a low g_m/I_D.

If you need high bandwidth, you have to operate the device at low efficiency.
Current Density, I_D/W

- Ultimately, we need to know how to size our devices to get a certain current
- The current density of a transistor increases with increased V_{GS} or overdrive voltage
- High g_m/I_D requires low current density, which implies bigger devices for a given current
CS Amplifier Design Example

- Specifications
 - 0.6µm technology
 - $|A_v| \geq 4\text{V}/\text{V}$
 - $f_u \geq 100\text{MHz}$
 - $C_L = 5\text{pF}$
 - $V_{dd} = 3\text{V}$
CS Amplifier Small-Signal Model (No R_S)

\[
\frac{v_o}{v_i} = \frac{(sC_{gd} - g_m)R_\parallel}{s(C_L + C_{gd} + C_{db})R_\parallel + 1}, \quad \text{where} \quad R_\parallel = \frac{r_o R_L}{r_o + R_L}
\]

\[
\omega_z = \frac{g_m}{C_{gd}} \quad \text{(located at very high frequency,} \; \omega < \omega_z)\]

\[
\omega_p = -\frac{1}{R_\parallel(C_L + C_{gd} + C_{db})} \approx -\frac{1}{R_L C_L}
\]

\[
A_v = -g_m R_\parallel \approx -g_m R_L
\]

\[
\omega_u = A_v \omega_p \approx \frac{g_m}{C_L}
\]
Design Procedure

1. Determine g_m from design specifications
 a. ω_u in this example

2. Pick transistor L
 a. Short channel \rightarrow high f_T (high bandwidth)
 b. Long channel \rightarrow high r_o (high gain)

3. Pick g_m/I_D (or f_T)
 a. Large g_m/I_D \rightarrow low power, large signal swing (low V_{ov})
 b. Small g_m/I_D \rightarrow high f_T (high speed)
 c. May also be set by common-mode considerations

4. Determine I_D/W from I_D/W vs g_m/I_D chart

5. Determine W from I_D/W

• Other approaches exist
1. Determine g_m (& R_L)

- From ω_u and DC gain specification

$$\omega_u = A_v\omega_p \approx \frac{g_m}{C_L}$$

$$g_m = \omega_u C_L = 2\pi(100MHz)(5pF) = 3.14mA/V$$

Note, this may be slightly low due to neglecting C_{gd} and C_{db}

$$A_v = -g_m R_\parallel \approx -g_m R_L$$

$$R_L = \frac{A_v}{g_m}$$

Adding 20% margin to compensate for r_o effects

$$R_L = \frac{A_v}{g_m} = \frac{4.8}{3.14mA/V} = 1.5k\Omega$$
2. Pick Transistor L

- Need to look at gain and f_T plots

NMOS Gain (g_m/g_o) vs g_m/I_D, $W=6\mu m$, $V_{DS}=1.5$V

NMOS $f_T (g_m/C_{gg})$ vs g_m/I_D, $W=6\mu m$, $V_{DS}=1.5$V

- Since amplifier $A_v \geq 4$, min channel length ($L=0.6\mu m$) will work with $g_m/I_D \sim 2$
 - Min channel length provides highest f_T at this g_m/I_D setting
3. Pick g_m/I_D (or f_T)

- Setting I_D for $V_O=1.5V$ for large output swing range

$$I_D = \frac{3V - 1.5V}{1.5k\Omega} = 1mA$$

$$g_m = \frac{3.14mA}{1mA/V} = 3.14V^{-1}$$
Verify Transistor Gain & f_T at g_m/I_D Setting

- Transistor gain = 30.6 >> amplifier $A_v \geq 4$
- Transistor $f_T = 6.7$GHz >> amplifier $f_u = 100$MHz
- g_m/I_D setting is acceptable
4. Determine Current Density (I_D/W)

- $g_m/I_D = 3.14 \text{V}^{-1}$ maps to a current density of $20.2 \mu\text{A/}\mu\text{m}$

- Verify current density is achievable at a reasonable V_{GS}
 - $V_{GS} = 1.15\text{V}$ is reasonable with $V_{dd} = 3\text{V}$ & $V_{DS} = 1.5\text{V}$
5. Determine Transistor W from I_D/W

- From Step 3, we determined that $I_D=1\text{mA}$

\[
W = \frac{I_D}{(I_D/W)} = \frac{1\text{mA}}{20.2\,\mu\text{A}/\mu\text{m}} = 49.5\,\mu\text{m}
\]

- For layout considerations and to comply with the technology design rules
 - Adjust 49.5\,\mu\text{m} to 49.2\,\mu\text{m} and realize with 8 fingers of 6.15\,\mu\text{m}
 - This should match our predictions well, as the charts are extracted with a 6\,\mu\text{m} device
 - Although it shouldn’t be too sensitive to exact finger width
Simulation Circuit
Operating Point Information

N0:betaeff	9.97E-03
N0:cbbb	2.48E-14
N0:cbd	-1.28E-17
N0:cbdbi	5.56E-14
N0:cbg	-8.56E-15
N0:cbh	-1.63E-14
N0:cbhbi	-1.63E-14
N0:cdh	-4.26E-15
N0:cdhbi	1.25E-14
N0:cdhdbi	-5.56E-14
N0:cdg	-2.87E-14
N0:cds	2.05E-14
N0:cbg	-1.42E-14
N0:cbgbvl	0
N0:cdgb	-1.25E-14
N0:cgdbi	5.07E-17
N0:cgdbp	1.26E-14
N0:cgdbm	7.41E-14
N0:cgdm	4.90E-14
N0:cgmb	-4.74E-14
N0:cgmsb	-3.49E-14
N0:cgmsi	1.26E-14
N0:cgmbi	5.56E-14
N0:cgms	0
N0:csb	-6.39E-15
N0:csd	-2.60E-17

Design Value

- **Operating Point Information**

N0:qb	-5.03E-14
N0:qbd	-9.46E-14
N0:qi	-5.03E-14
N0:qbs	0
N0:qd	-3.72E-15
N0:qdi	-8.10E-15
N0:qg	8.07E-14
N0:qg	7.06E-14
N0:qinv	4.20E-03
N0:qsi	-1.21E-14
N0:qsco	-2.66E-14
N0:region	2
N0:reversed	0
N0:ron	1.50E+03
N0:type	0
N0:vbs	0
N0:vdb	1.502
N0:vds	1.502
N0:vdsw	3.91E-01
N0:vfbeff	-9.65E-01
N0:vg	1.153
N0:vgd	-3.49E-01
N0:vgw	1.153
N0:vgsteff	5.00E-01
N0:vth	6.53E-01

Total Cgate = Cgg = 74.1fF

Total Cdrain = Cdd + Cjd = 12.5fF + 55.6fF = 68.1fF

Total Csource = Css + Cjs = 43.2fF + 0fF = 43.2fF
AC Response

- Design is very close to specs
- Discrepancies come from neglecting r_o and C_{drain}
- With design table information we can include estimates of these in our original procedure for more accurate results
Next Time

• Single-Stage Amplifiers