Common Source / Source Resistance

![Schematic Diagram]

Why $R_S = R_{S1} + R_{S2}$?

The source resistor provides a DC bias point more robust to variations (K_P, V_T, temperature). This comes at the cost of reduced gain.

DC Biasing

![Schematic Diagram]

$$V_G = V_{DD} \left(\frac{R_{S2}}{R_{S1} + R_{S2}} \right)$$

$$I_D = \frac{1}{2} K P N \frac{W}{L} \left[V_G - I_D R_S - V_{TN} \right]^2$$

⇒ Must solve quadratic equation for I_D

After some algebra...

$$I_D^2 R_S^2 = I_D \left[2 (V_G - V_{TN}) R_S + \frac{2}{K P N \frac{W}{L}} \right] + (V_G - V_{TN})^2 = 0$$

⇒ Get 2 solutions, choose the one consistent with saturation (probably smaller value)
AC Equivalent Model (V/V model)

Neglecting v_0 to simplify analysis

$$v_0 = -i \left(R_0 || R_L \right)$$

$$i = \frac{v_i}{g_m + R_s}$$

$$v_0 = -\frac{v_i (R_0 || R_L)}{g_m + R_s} = -\frac{g_m (R_0 || R_L)}{1 + g_m R_s} v_i$$

$$A_v = \frac{v_0}{v_i} = -\frac{g_m (R_0 || R_L)}{1 + g_m R_s}$$

If $g_m R_s \gg 1 \Rightarrow$ gain approaches $- \frac{R_0}{R_s}$

(and R_L big)

Source cap allows for both stable DC bias and high AC gain.

* For R_{in}, since $i_a = 0$

* For R_{out}: $\frac{v_o}{v_i} = 0, i = 0$

$$R_{in} = \frac{v_i}{i} = R_a \quad (mattered)$$

$$R_{out} = R_0 \quad (mattered by R_s)$$
Common Drain

\[VDD \]
\[V_i \]
\[V_o \]
\[R_s \]
\[R_{a1} \]
\[R_{a2} \]
\[R_L \]
\[R_{out} \]

AC Equivalent Circuit (neglecting \(R_o \))

\[V_o = i (R_s \parallel R_L) \]

\[= \frac{V_i (R_s \parallel R_L)}{\frac{1}{g_m} + (R_s \parallel R_L)} \]

\[
A_V = \frac{V_o}{V_i} = \frac{g_m (R_s \parallel R_L)}{1 + g_m (R_s \parallel R_L)}
\]

\[R_{in} = \frac{V_i}{i_i} = R_a \quad \text{(same as CS)} \]

For \(R_{out} \):

\[R_{out} = R_s \parallel \frac{1}{g_m} \quad \text{(low)} \]
Common Gate

\[V_{PD} \]

\[R_{a1} \]

\[R_{a2} \]

\[V_{in} \]

AC Equivalent Circuit (Neglecting \(R_o \))

\[V_i \]

\[R_s \]

\[\frac{1}{g_m} \]

\[i \]

\[V_o = -i \left(R_p || R_L \right) \]

\[i = -\frac{V_i}{V_{in}} \]

\[A_v = \frac{V_o}{V_i} = g_m \left(R_p || R_L \right) \]

(Medium Gain) (Non-Inv)

\[R_{in} = R_s \parallel \frac{1}{g_m} = \frac{1}{g_m} \]

(10x)

For \(R_{out} \):

\[R_o \]

\[V_{out} \]

\[R_{out} = R_o \] (High)