1. Problem 3.8. Note: $x = 0$ refers to the (second) interface where V_2 changes from $-2eV$ to $3eV$.

2. Consider electron incidence onto a metal/vacuum interface (from metal to vacuum). The height of the potential barrier is $5eV$. Suppose the electron energy is $10eV$ and $3eV$, respectively, calculate (for both cases)
 (1) k_1 and k_2.
 (2) The electron reflection/transmission coefficients and the current reflection/transmission coefficients.

3. If the location of the metal and vacuum is switched (electron incidence from vacuum to metal), repeat Problem 2. Hint: please note the sign of V_2.

4. Suppose we shoot UV light of certain wavelength onto two quantum dot (QD) solutions (same material, but different size). One solution appears red color (with light emission wavelength of 630 nm) and another solution appears blue color (with light emission wavelength of 480 nm). Suppose energy levels E_1 and E_{11} are most preferable for the electrons.
 (1) Calculate the energy gap (difference) between E_1 and E_{11} for the above two QD solutions.
 (2) Determine the average size of the nanoparticles of the above two QD solutions.
 (3) What is the minimum photon energy of the incident UV light to “light up” both the QD solutions? What can you say about the wavelength requirement of the incident UV light?
 (4) If the size of QD particles are increased to $50 \mu m$, what is the difference between E_{11} and E_1? What is the wavelength of the emission? Is it still visible (400 nm-700 nm)?

Hint:
(1) QDs can be considered as 3D quantum wells for the electrons confined inside when $E<V_2$. The energy of the electrons is thus discrete and turn into individual levels, which can be estimated by $E_n = \frac{h^2n^2}{8mL^2}$, where n is the energy level number and L is the average size of the QD (nanoparticle). The electrons cannot take any energy values between E_{n-1} and E_n.
(2) When absorbing energy from photons, thermal heating, or electrical current, the energy of the electrons can be increased to a preferable higher discrete value determined by the equation of E_n. In this case, we can say the electrons are
“excited” to a higher energy level. The total absorbed energy is equal to the
difference between the original and targeted levels. To do so, the total supplied
energy must be equal to or greater than the difference.
(3) Naturally, the electrons on high energy levels tend to lose their energy to “relax”
to a lower energy level. The total lost energy is equal to the difference between
the original and targeted levels. Under certain conditions, this energy can be
completely converted into that of a photon with energy equal to $\frac{hc}{\lambda}$.

5. Suppose we use a scanning tunneling microscope (STM) to conduct surface
measurements on copper surface. At the measurement temperature, the electron
energy is 4.45eV lower than the potential barrier imposed by the vacuum gap. When
the probe tip is scanning on a flat and smooth surface, the tunneling current is
maintained at I_0. However, when the probe tip scans across a surface feature, the
tunneling current becomes 0.1I_0.
(1) Is this a concave or convex feature?
(2) Calculate k_2.
(3) What is the depth (d) or height (h) of this feature?

Hint: Suppose when the probe is on the flat surface, the gap is d_1. When the probe is
scanning on the surface feature, the gap becomes d_2. The difference between d_1 and
d_2 gives h or d.

![STM probe tip diagram]