Course title and number ECEN 489: At the Interface of Engineering and Life Sciences
Term Spring 2015
Meeting times and location Tu/Th 12:45 – 2:00 PM, CHEN 104

Course Description and Prerequisites

Course Description: This course aims to provide a broad overview of electrical and computer engineering principles that are being applied to various areas in life sciences and introduce recent trends in interfacing engineering and various life science disciplines to address emerging grand challenges.

Prerequisites: None (suitable for junior and senior students, but not limited to)

Learning Outcomes or Course Objectives

Engineering principles are revolutionizing our understanding in various life science disciplines, from biological sciences to medical sciences. The objective of this course is to provide a broad overview of electrical and computer engineering principles, and more broadly engineering principles, that are being applied to various areas of life sciences. Recent trends in interfacing engineering and life science to address emerging grand challenge problems in health, bioenergy, and biosecurity will be introduced. This will be a team-taught course by several faculties.

Instructor Information

Name Profs. Arum Han and Xiaoning Qian
Telephone number 979-845-9686
Email address arum.han@ece.tamu.edu, xqian@ece.tamu.edu
Office hours TBD
Office location WEB 309C

Textbook and/or Resource Material

Handouts

Grading Policies

Homeworks: 80%
Term Project: 20%

Course Topics, Calendar of Activities, Major Assignment Dates

Week 1: Introduction - At the Interface of Electrical Engineering and Life Sciences

- Introduction to life science areas where electrical and computer engineering technologies have made - and will continue to make - impacts
- Sensing techniques, imaging techniques (MRI/CT/PET/Ultrasound), brain-machine interfaces, implantable devices (e.g. pace makers), defibrillators, etc.
- Bio-signal processing (EEG/ECG) and biomedical image processing
- Bioinformatics
Week 2: Introduction to Biology and Medicine
- How biological systems function: DNA, RNA, Cell, Protein
- Conventional measurement technologies (DNA microchip, DNA sequencing devices, fluorescence technology, western blot, mass spectrometry, biosensors)

Week 3: Scientific Epistemology and Control in Biology
- On scientific knowledge
- History of science
- On translational science
- Biological pathways, robustness in biological systems, gene regulatory networks.
- Boolean network models
- Optimal and heuristic methods for network control

Week 4 - 6: Bioinformatics, Computational Biology, and Pattern Recognition in Genomics
- Sequencing techniques
- Sequence assembly, sequence alignment, gene prediction
- Predicting the structure and function of biomolecules
- Signal processing models and methods for biological signal & data analysis
- Introduction to classifier design
- Error estimation and validation of classification methods
- Application in disease diagnosis/prognosis, biomarker discovery

Week 7-9: Medical Imaging (MRI, CT, PET, Ultrasound)
- Introduction to cross-sectional imaging acquisition and reconstruction
- Overview of sensitivity, information sources and contrast in MRI, CT and PET
- Hardware overview of MRI, CT and PET.
- General notions on ultrasound imaging including ultrasound wave propagation and scattering of ultrasound in biological tissues
- Electronic transducers for ultrasound imaging
- Overview of state-of-the-art ultrasound techniques including harmonic imaging, elasticity imaging, 3D/4D imaging, high intensity focused ultrasound

Week 10: Biomedical Image Processing
- Image segmentation
- Image registration
- Parametric mapping

Week 11 - 12: Micro and Nano Technology
- Microfabrication and micro-electro-mechanical systems (MEMS)
- Microfluidics and lab-on-a-chip (point of care diagnosis, high throughput screening systems)
- Micro/nano sensors

Week 13-14: Recent Trends in Interfacing Electrical Engineering and Life Sciences
- Enabling technology for personalized medicine
- Computational prediction of drug response, computational toxicology
- Brain activity maps
- Next-generation prosthetics (e.g. brain-machine interface)
- Microphysiological systems
- Enabling technologies in global and remote healthcare

Americans with Disabilities Act (ADA)
The Americans with Disabilities Act (ADA) is a federal anti-discrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that all students with disabilities be guaranteed a learning environment that provides for
reasonable accommodation of their disabilities. If you believe you have a disability requiring an accommodation, please contact Disability Services, in Cain Hall, Room B118, or call 845-1637. For additional information visit http://disability.tamu.edu

Academic Integrity
For additional information please visit: http://aggiehonor.tamu.edu

"An Aggie does not lie, cheat, or steal, or tolerate those who do."

The handouts used in this course are copyrighted. The definition of "handouts" is all materials generated for this class, which include but are not limited to syllabi, homework assignments, in-class materials, and additional printed materials except published scientific papers for personal use. Because these materials are copyrighted, **you do not have the right to make additional copies of the handouts unless the instructor of this course expressly grants permission.** As commonly defined, plagiarism consists of passing off the ideas, words, writings, etc., of another as one’s own. In accordance with this definition, you are committing plagiarism if you copy the work of another person without proper citation and acknowledgement, and turn it in as your own, even if you should have the permission of that person. **Plagiarism** is one of the worst academic offenses, for the plagiarist destroys the trust among colleagues without which research cannot be safely communicated. **Paraphrasing** without proper citation and acknowledgement is one form of plagiarism. If you have any questions regarding plagiarism, please consult the latest issue of the Texas A&M University Student Rules, under the section "Scholastic Dishonesty". Any forms of dishonesty including, but not limited to, cheating on any examinations and plagiarism on the **Review project** will be handled according to the procedures outlined by the Aggie Honor System Office. Please check the following websites for further information:

University Regulations Student Handbook: http://student-rules.tamu.edu
Definition of Academic Misconducts: http://www.tamu.edu/aggiehonor/acadmisconduct.htm