
Error Probability Analysis of TAS/MRC-Based
Scheme for Wireless Networks

Jia Tang and Xi Zhang
Networking and Information Systems Laboratory

Department of Electrical Engineering
Texas A&M University, College Station, TX 77843, USA

Email: {jtang, xizhang}@ee.tamu.edu

Abstract— We develop the framework to analyze the symbol-
error probability (SEP) for the scheme integrating transmit
antenna selection (TAS) with maximal-ratio combining (MRC)
used in wireless networks. Applying this scheme, the transmitter
always selects an optimal antenna out of all possible antennas
based on channel state information (CSI) feedbacks. Over
flat-fading Rayleigh channel, we develop the closed-form SEP
expressions for a set of commonly used constellations when
assuming the perfect and delayed CSI feedbacks, respectively.
We also derive the Chernoff-bounds of the SEP’s for both
perfect and delayed feedbacks. Our analyses show that while
the antenna diversity improves the system performance, the
feedback delay can significantly impact the SEP of TAS/MRC
schemes.

Index Terms—Symbol-error probability (SEP), order statistics,
transmit antenna selection (TAS), wireless networks.

I. I NTRODUCTION

T HE EXPLOSIVE demand for high speed wireless net-
working motivates an unprecedented revolution in wire-

less communications [1]. This presents great challenges in
designing the next-generation wireless systems since the mul-
tipath fading channel has a significant impact on reliable trans-
missions over wireless networks. To overcome this problem,
multiple-input-multiple-output (MIMO) architecture emerges
as one of the most important technical breakthroughs in
modern wireless communications [1] [2].

Based on whether or not the channel state information
(CSI) is available at the transmitter, the MIMO systems
can be classified into open-loop systems (i.e., without CSI
feedback) and closed-loop systems (i.e., with CSI feedback).
For the open-loop systems, space-time block coding (STBC)
is a simple and powerful approach to achieve the diversity
gain [3] [4]. For the closed-loop systems, the smart-antenna
(SA) technique using transmit beamforming is shown to be
optimal [5] [6]. The STBC-based scheme cannot achieve the
performance as good as SA-based scheme, while the process-
ing complexity of SA, e.g.,full CSI feedback, eigenvalue or
singular-value decomposition, etc, is much higher than that
of STBC. Moreover, both STBC and SA require multiple RF
chains, which are typically very expensive [7]. In contrast,
the scheme using transmit antenna selection (TAS) provides a
good tradeoff among cost, complexity, and performance.
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As compared to STBC- and SA-based schemes, TAS re-
ceives relatively much less research attention. TAS was first
proposed in [8] and thereafter studied in, e.g., [6] [9] [10].
Unlike SA-based scheme using the full CSI feedback, the
TAS-based scheme only employs thepartial CSI feedback,
which costs much less feedback channel bandwidth. Using
this partial CSI feedback in TAS scheme, a single antenna
out of all possible transmit antennas, which maximizes the
signal-to-noise ratio (SNR) at the receiver, is dynamically
selected to transmit data. When integrating TAS with maximal-
ratio combining (MRC) at the receiver, the scheme is called
TAS/MRC [10]. Also, TAS scheme needs only one RF chain,
and does not impose complicated signal processing at the
transmitter, which can significantly reduce the transmitter’s
hardware and software complexity.

As a closed-loop MIMO scheme, the accuracy of CSI feed-
back will significantly impact the performance of TAS/MRC-
based system. In [9] and [10], the authors derived closed-form
bit-error rate (BER) expressions for BPSK modulation with
the perfect feedbacks. In [9], the authors alsonumerically
analyzed the impact of feedback delays on the BER of BPSK
modulation without obtaining any closed-form BER expres-
sions. In this paper, we analyze the symbol-error probability
(SEP) of a set of commonly used signal constellations for
TAS/MRC scheme with both perfect and imperfect feedbacks.
For perfect feedbacks, we obtain the closed-form SEP expres-
sions, which are more general and explicit than the previous
results. Dealing with the imperfect feedbacks, we focus on
feedback delays. Under a number of special cases, we obtain
the closed-form SEP expressions to take the feedback delays
into account. In all above situations, we develop the closed-
form Chernoff-bounds of the SEP’s. Our analyses show that
while the antenna diversity improves the system performance,
the feedback delays can significantly affect the SEP of the
TAS/MRC-based scheme.

The rest of the paper is organized as follows. Section II
describes the system model. Section III derives the SEP when
the feedback is perfect. Section IV derives the SEP with the
delayed feedbacks. Section V presents the numerical results
of the SEP for TAS/MRC scheme. The paper concludes with
Section VI.

II. SYSTEM DESCRIPTION

We consider a point-to-point wireless link over flat-fading
Rayleigh channel in a MIMO wireless networks withNt trans-



mit antennas at the transmitter andNr receive antennas at the
receiver. The complex channel gain between theith transmit
antenna and thejth receive antenna is denoted byhij [n],
where i ∈ [1, Nt], j ∈ [1, Nr], and n is the discrete time-
index. The channel gains are modeled as stationary and ergodic
random processes, the marginal distributions of which follow
independent identically distributed (i.i.d.) Gaussian with zero-
mean and variance ofΩ/2 per dimension. The receiver is
assumed to have the perfect knowledge of the CSI. Thus, the
index of the optimal transmit antenna, which maximizes the
total received power, can be obtained and then fed back to the
transmitter by the receiver. Based on this partial CSI feedback,
the transmitter selects the optimal antenna out ofNt candidates
to send data. Since our discussion focuses on the level of the
symbol duration, we omit the time-indexn in the rest of the
paper for simplicity.

If the transmitter selects an arbitrary antennai for data
transmission, the received signal vectorr can be expressed
as

r = his + w (1)

where r = (r1 ... rNr )
T is the received signal vector,(·)T

denotes the transpose of(·), hi = (hi1 ... hiNr
)T is the

channel gain vector,s denotes the transmitted symbol, and
w = (w1 ... wNr )

T represents the zero-mean additive white
Gaussian noise (AWGN) vector, which are modeled as i.i.d.
and having the single-sided power-spectral density ofN0.
At the receiver side, the maximal-ratio combining (MRC) is
employed. Then, the post-processing SNR at the output of the
MRC combiner when using an arbitrary transmit antennai,
denoted byγ(i), can be expressed as

γ(i) =
Es

N0

Nr∑

j=1

∣∣hij

∣∣2 (2)

where Es denotes the average energy per symbol. We sort
{γ(i)}Nt

i=1 from the highest SNR to the lowest SNR, as follows:

γ[Nt] ≥ γ[Nt−1] ≥ ... ≥ γ[1], (3)

such that{γ[i]} 1
i=Nt

forms the permutation of the original

{γ(i)}Nt
i=1 sorted in a descending order. When employing TAS,

the transmitter always selects the antenna which can maximize
the SNR, i.e., the highest SNR as

γ[Nt] = max
i∈{1,···,Nt}

{
γ(i)

}
. (4)

III. SEP WITH PERFECTCSI FEEDBACK

A. Post-Processing SNR

In this section, we assume that the CSI feedback is perfect,
i.e., there is no feedback delay considered. Over the flat-

fading Rayleigh channel, the post-processing SNRγ(i) follows
the centralχ2 distribution with degree of freedom equal to
2Nr. The probability density function (PDF) and cumulative
density function (CDF) ofγ(i), denoted byg(γ) and G(γ),
respectively, can be expressed as [11]

g(γ) =
γNr−1

γ Nr (Nr − 1)!
exp

(
−γ

γ

)
, (5)

G(γ) = 1− exp
(
−γ

γ

) Nr−1∑
m=0

(
1
m!

)(
γ

γ

)m

(6)

where γ = EsΩ/N0 denotes the average SNR per symbol.
Using the order statistics [12], the PDF of thekth ordered
statisticsγ[k], denoted byf[k](γ), can be expressed as

f[k](γ) =
Nt! g(γ)

(k − 1)!(Nt − k)!
[
G(γ)

]k−1[1−G(γ)
]Nt−k

(7)

whereg(γ) and G(γ) are given by Eqs. (5) and (6), respec-
tively. Employing TAS, the transmitter selects the antenna with
the highest SNRγ[Nt]. Thus, Eq. (7) generates the PDF of
γ[Nt], which is specified by

f[Nt](γ) = Nt g(γ)
[
G(γ)

]Nt−1
. (8)

B. SEP Derivations

Based on the PDF ofγ[Nt] given in Eq. (8), the average
symbol error probability (SEP), denoted byPM , for a set
of commonly used signal constellations, including BPSK,M -
PSK, andM -PAM, can be expressed, or approximated, as

PM =
∫ +∞

0

α Q
(√

βγ
)

f[Nt](γ)dγ (9)

where α and β are determined by the specific constella-
tions [11]. For example, for BPSK modulation,α = 1 and
β = 2; for M -PSK, α ≈ 2 and β ≈ 2 sin2 (π/M); for M -
PAM, α = 2(M − 1)/M andβ = 6/(M2 − 1).

For squareM -QAM, the SEPP ′M = 1 − (1 − P√M )2,

whereP√M is the SEP of
√

M -PAM with α = 2(1−1/
√

M)
and β = 3/(M − 1). SinceP ′M can be easily obtained from
P√M , we only focus on the derivations ofPM in Eq. (9) in
the rest of the paper. To further derive the SEP, we introduce
the following integral function [13]:

ψ(L)
4
=

∫ +∞

0

Q(
√

ax)xL exp
(
−x

b

)

=
1
2
bL+1L!

[
1−

L∑

k=0

µ

(
1− µ2

4

)k(
2k
k

)]
(10)

PM =
αNt!

(Nr − 1)!

Nt−1∑

k=0





∑

i0+...+iNr−1=k

(−1)kp !
[
1− µk

∑p
j=0

(
1−µ2

k

4

)j (
2j
j

)]

2(k + 1)p+1(Nt − k − 1)!
(∏Nr−1

m=0 im! (m!)im

)





(11)



where µ =
√

ab/(2 + ab). Substituting Eqs. (5) and (6)
into Eq. (8) and using Eq. (10),PM can be derived as
Eq. (11), which is shown at the bottom of this page, where
p =

∑Nr−1
m=0 mim + Nr − 1, µk =

√
βγ/ (2k + βγ + 2), and

the terms{im}Nr−1
m=0 areall possiblecombinations satisfying:
{

0 ≤ im ≤ k
i0 + ... + iNr−1 = k,

(12)

with each combination satisfying Eq. (12) corresponding to
one term within the second summation operation in Eq. (11).

Note that both [9] and [10] addressed the derivations ofPM

for BPSK modulation. In contrast with these existing results,
our expression is more general and more explicit for com-
puter calculations. Furthermore, Eq. (11) can be significantly
simplified under some special cases as follows:

CASE I: Nt = 1.
WhenNt = 1, in terms of Eq. (8), we havef[Nt](γ) = g(γ).

The SEP given by Eq. (11) reduces to:

PM =
α

2


1− µ0

Nr−1∑

j=0

(
1− µ2

0

4

)j (
2j
j

)
 (13)

which corresponds to the case where no TAS is employed.

CASE II: Nr = 1.
SubstitutingNr = 1 into Eq. (11), SEP can be simplified

to

PM = α

Nt−1∑

k=0

(−1)k

(
Nt

k + 1

) (
1− µk

2

)
(14)

which corresponds to the case where no MRC is employed.

CASE III: Nr = 2.
When Nr = 2, the SEP given by Eq. (11) can be derived

as

PM =
Nt−1∑

k=0

k∑
m=0

αNt!(−1)k(m + 1)
2(k + 1)m+2(Nt − k − 1)!(k −m)!

·

1− µk

m+1∑

j=0

(
1− µ2

k

4

)j (
2j
j

)
 . (15)

For the cases with more than 2 receive antennas, the expres-
sion of PM is complicated. Moreover, due to the hardware
constraints at the mobile users or handsets, the number of
receive antennas at the mobile terminals is typically limited.
Therefore, the cases withNr ≤ 2 are particularly attractive
for the practical wireless-network implementations.

C. The Chernoff-Bound of SEP

Although Eq. (11) can be simplified under some special
cases, it still suffers from the complexity. To remedy this
problem, we derive the Chernoff-bound of SEPPM for

any numbersNt and Nr of transmit and receive antennas,
respectively, as follows:

PM ≤ α

∫ +∞

0

exp
(
−βγ

2

)
f[Nt](γ)dγ

=
αNt!

(Nr − 1)!

Nt−1∑

k=0





∑

i0+...+iNr−1=k

(−1)kp !
(Nt − k − 1)!

·

(
2

2(k+1)+βγ

)p+1

(∏Nr−1
m=0 im! (m!)im

)





. (16)

Using Eq. (16), we obtain the simplified expressions under
some special cases as follows:

CASE I: Nt = 1.

PM ≤ α

(
2

2 + βγ

)Nr

. (17)

CASE II: Nr = 1.

PM ≤
Nt−1∑

k=0

2(−1)kαNt!
(Nt − k − 1)!k! [2(k + 1) + βγ]

. (18)

CASE III: Nr = 2.

PM ≤
Nt−1∑

k=0

k∑
m=0

(−1)kαNt!(m + 1)
(

2
2(k+1)+βγ

)m+2

(Nt − k − 1)!(k −m)!
. (19)

It is worth noting that the Chernoff-bound ofP ′M for M -QAM
is valid only when the Chernoff-bound ofP√M for

√
M -PAM

is less than or equal to 1, becauseP ′M = 1− (
1− P√M

)2
.

IV. SEPWITH FEEDBACK DELAYS

A. Induced Order Statistics Analysis

In this section, we assume that the transmitter receives the
feedback with a time-delay, denoted byτ . Due to the time-
varying nature of the wireless channel, the current optimal
SNRγ[Nt] may have changed already at the moment when the
transmitter receives the feedback after the delayτ , which can
significantly degrade the performance of TAS/MRC scheme.

Let γ̃[Nt] denote the time-delayed SNR of the originalγ[Nt],
and γ̃(i) denote the time-delayed SNR of the originalγ(i).
According to the order statistics [12],̃γ[Nt] is called the
induced order statistics(or the concomitant) of the original
ordered γ[Nt]. The PDF of γ̃[Nt], denoted byf̃[Nt](γ̃), is
determined by

f̃[Nt](γ̃) =
∫ +∞

0

f (γ̃|γ) f[Nt](γ)dγ

=
∫ +∞

0

[
f (γ, γ̃)
g(γ)

]
f[Nt](γ)dγ (20)

where f (γ̃|γ) denotes the PDF of̃γ(i) conditioned onγ(i),
andf (γ, γ̃) is the joint PDF ofγ(i) and γ̃(i). Then, the SEP



considering feedback delay, denoted byP
(d)
M , can be expressed

as

P
(d)
M =

∫ +∞

0

αQ
(√

βγ̃
)

f̃[Nt](γ̃)dγ̃. (21)

wheref̃[Nt](γ̃) is given by Eq. (20), which can be derived by
using the following proposition:

Proposition 1: For any two random variablesγ1 and γ2

following the centralχ2 distribution with PDF’s specified by
Eq. (5), the joint PDFf(γ1, γ2) can be expressed as follows:

f (γ1, γ2) =
g (γ1) g (γ2) (Nr − 1)!

(1− ρ)
INr−1

(
2
√

ργ1γ2

(1− ρ)
√

γ1γ2

)

·
(

ργ1γ2

γ1γ2

)−Nr−1
2

exp
(
− ρ

1− ρ

(
γ1

γ1

+
γ2

γ2

))
(22)

whereIν(·) denotes the modified Bessel function of the first
kind with orderν, and ρ is the correlation coefficient ofγ1

andγ2.
Proof: Using the Kibble’s bivariate gamma distribu-

tion [14], Eq. (22) can be obtained.
Using Proposition 1, the conditional PDFf(γ2|γ1) can be

derived as

f (γ2|γ1) =

(
γ1γ2
ργ1γ2

)Nr−1
2

(1− ρ)γ2

INr−1

(
2
√

ργ1γ2

(1− ρ)
√

γ1γ2

)

· exp
(
− 1

1− ρ

(
ργ1

γ1

+
γ2

γ2

))
. (23)

Substitutingγ1 = γ, γ2 = γ̃, andγ1 = γ2 = γ into Eq. (23),
we obtain the expression off(γ̃|γ) in Eq. (20), which can be
expressed as

f(γ̃|γ)=

(
γ̃
ργ

)Nr−1
2

exp
(
− ργ+γ̃

(1−ρ)γ

)

(1− ρ)γ
INr−1

(
2
√

ργγ̃

(1− ρ)γ

)
(24)

where the correlation coefficientρ is determined by [15]

ρ = J2
0 (2πfDτ) (25)

where J0(·) denotes the zeroth-order Bessel function of the
first kind andfD is the Doppler frequency.

Note that Eq. (24) follows the non-centralχ2 distribution
when ρ 6= 0. On the other hand, whenρ = 0, by expanding
the Bessel function,f(γ̃|γ) can be expressed as

f(γ̃|γ) = g(γ̃). (26)

Then, forρ = 0, the PDFf̃[Nt](γ̃) of the concomitant̃γ[Nt]

in Eq. (20) can also be simplified as

f̃[Nt](γ̃) =
∫ +∞

0

g(γ̃)f[Nt](γ)dγ = g(γ̃) (27)

which is expected sinceρ = 0 means that the delayed SNR
γ̃[Nt] is independent of the originalγ[Nt], making TAS have
no effect (effectivelyNt = 1). Thus, whenρ = 0 the SEP
and the Chernoff-bounds of SEP are determined by Eqs. (13)
and (17), respectively.

B. SEP Derivations

Whenρ 6= 0, substituting Eq. (24) into Eq. (20) and solving
the integral, we can derive the PDF̃f[Nt](γ̃) as Eq. (28), which
is shown at the bottom of this page, where1F1(·) denotes the
confluent hypergeometric (Kummer) function [16].

Note that the authors in [9] also focused on deriving the
expression of̃f[Nt](γ̃) (see [9], Eq. (13)). However, we obtain
the similar expression by using the different approaches.
The authors in [9] started from the conditional Gaussian
distribution, while we derive Eq. (28) from Proposition 1.
As compared to [9], our approach is more general. Also,
our expression, which explicitly containsρ, can offer more
insights. Furthermore, the authors in [9] did not obtain any
closed-form expression for Eq. (21) (withα = 1 andβ = 2)
and thus they only solved it numerically. In contrast, we obtain
the closed-form expressions of Eq. (21) for some special cases
as follows.

CASE I: Nt = 1.
SubstitutingNt = 1 into Eq. (28) and using the properties

of Kummer function [16],f̃[Nt](γ̃) can be simplified as

f̃[Nt](γ̃) =
γ̃Nr−1

γ Nr (Nr − 1)!
exp

(
− γ̃

γ

)
. (29)

Note that Eq. (29) is independent ofρ and has the same
expression asg(γ) in Eq. (5), which is expected since no TAS
is employed (Nt = 1), the feedback delay will not affect the

performance of the system. Thus, the SEPP
(d)
M also has the

same expression as Eq. (13).

CASE II: Nr = 1.
The PDFf̃[Nt](γ̃) whenNr = 1 can be simplified as

f̃[Nt](γ̃) =
Nt−1∑

k=0

(−1)kNt! exp
(
− γ̃

(1−ρ)γ

)

[k(1− ρ) + 1] γ (Nt − k − 1)!k!

·1F1

(
1; 1;

ργ̃

[k(1− ρ) + 1][(1− ρ)γ]

)
. (30)

Substituting Eq. (30) into Eq. (21) and using the properties of

Kummer function,P (d)
M can be derived as

P
(d)
M = α

Nt−1∑

k=0

(−1)k

(
Nt

k + 1

)(
1− µ̃k

2

)
(31)

f̃[Nt](γ̃) =
Nt! γ̃Nr−1 exp

(
− γ̃

(1−ρ)γ

)

[(1− ρ)γ]Nr [(Nr − 1)!]2

Nt−1∑

k=0





∑

i0+...+iNr−1=k

(−1)k
(

1−ρ
k(1−ρ)+1

)p+1

p ! 1F1

(
p + 1; Nr; ργ̃

[k(1−ρ)+1][(1−ρ)γ]

)

(Nt − k − 1)!
(∏Nr−1

m=0 im! (m!)im

)





(28)



where

µ̃k =

√
[k(1− ρ) + 1]βγ

2(k + 1) + [k(1− ρ) + 1]βγ
. (32)

Note that Eq. (31) has the similar structure to Eq. (14) except
that µ̃k is different fromµk. However, whenρ = 1, we have
µ̃k = µk, making the two SEP expressions exactly same with
each other, which is expected sinceρ = 1 corresponds to the
time delayτ = 0, the perfect feedback case. This also verifies
the correctness of Eq. (31).

CASE III: Nt = Nr = 2.
The system structure withNt = Nr = 2 is attractive since it

can be used for the Ad Hoc wireless networks. Similar to the
above two cases, we can derive the SEPP

(d)
M by expanding

f̃[Nt](γ̃) and solving the integral, as follows:

P
(d)
M =

α

2
(1− µ̃0)2(2 + µ̃0)− α(4− 3ρ)

8(2− ρ)
(1− µ̃1)2(2 + µ̃1)

− αρ

32(2− ρ)
(1− µ̃1)3(3µ̃2

1 + 9µ̃1 + 8) (33)

whereµ̃0 and µ̃1 are the special forms of̃µk in Eq. (32).

C. The Chernoff-Bound of SEP

In Section IV-B, we derive the closed-form expressions of

SEP P
(d)
M under a number of special cases. For the more

complex cases, deriving the closed-form expressions are also
possible. However, it is tedious and cannot be expressed by
general expressions. Alternatively, in this section we derive

the Chernoff-bound ofP (d)
M for any numbersNt and Nr

of transmit and receive antennas, respectively. The Chernoff-

bound ofP (d)
M is determined by

P
(d)
M ≤ α

∫ +∞

0

exp
(
−βγ̃

2

)
f̃[Nt](γ̃)dγ̃ (34)

Substituting Eq. (28) into Eq. (34) and solving the integral,

the Chernoff-bound of SEPP (d)
M can be derived as Eq. (35),

which is shown at the bottom of this page. Note that when
ρ = 1, Eq. (35) becomes Eq. (16), verifying the correctness
of our derivations. Also, we provide the results under some
special cases as follows:

CASE I: Nt = 1.

P
(d)
M ≤ α

(
2

2 + βγ

)Nr

. (36)

CASE II: Nr = 1.
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Fig. 1. The SEPPM ’s and the corresponding Chernoff-bounds with perfect
CSI feedback using different numbers of transmit and receive antennas.

P
(d)
M ≤

Nt−1∑

k=0

αNt!(−1)k
(

2
βγ[k(1−ρ)+1]+2(k+1)

)

(Nt − k − 1)!k!
(37)

CASE III: Nr = 2.

P
(d)
M ≤

Nt−1∑

k=0

k∑
m=0

(−1)k4αNt!(m + 1)
(Nt − k − 1)!(k −m)! [(1− ρ)βγ + 2]2

·
(

(1− ρ)βγ + 2
βγ[k(1− ρ) + 1] + 2(k + 1)

)m+2

. (38)

V. PERFORMANCEEVALUATIONS

Without loss of generality, we evaluate the SEP performance
of TAS/MRC scheme using BPSK modulation (α = 1, β = 2).
In all figures, we present the exact SEP’s and the correspond-
ing Chernoff-bounds, which are plotted by the solid and dotted
lines, respectively. All results used in the figures are calculated
by using the closed-form expressions for both exact SEP’s and
Chernoff-bounds derived in the previous sections.

Using the general and the special forms of Eqs. (11) and
Eq. (16), Fig. 1 shows the SEPPM ’s and the corresponding
Chernoff-bounds with perfect CSI feedbacks when using dif-
ferent numbersNt and Nr of transmit and receive antennas.
As shown in Fig. 1, both the SEP and the Chernoff-bound
decreases as the product ofNt and Nr increases, which
verifies the fact that TAS/MRC can achieve the diversity order
of NtNr [7] [10], as if all the transmit antennas were used.

P
(d)
M ≤ αNt!

(Nr − 1)!

(
2

(1− ρ)βγ + 2

)Nr Nt−1∑

k=0





∑

i0+...+iNr−1=k

(−1)kp !
(

(1− ρ)βγ + 2
βγ[k(1− ρ) + 1] + 2(k + 1)

)p+1

(Nt − k − 1)!
(∏Nr−1

m=0 im! (m!)im

)





(35)
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Fig. 2. The SEPP
(d)
M and the corresponding Chernoff-bounds when

considering feedback delays using different numbers of transmit and receive
antennas (γ = 10 dB).
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Fig. 3. The SEPP
(d)
M and the corresponding Chernoff-bounds when

considering feedback delays using different numbers of transmit antennas
(Nr = 1, γ = 20 dB).

Also we can see from Fig. 1 that the Chernoff-bounds are
tight, especially when the average SNRγ or the diversity order
NtNr is high. For example, whenNt = 8 and Nr = 4, the
difference between the exact SEP and its Chernoff-bound is
only about 1 dB atPM = 10−6.

Finally, Figs. 2 and 3 plot the SEPP (d)
M ’s and their

Chernoff-bounds when considering feedback delays, where the
average SNR is set toγ = 10 dB in Fig. 2 andγ = 20 dB in
Fig. 3, respectively. As shown by both of the figures, the SEP

P
(d)
M ’s increase with the increase of the normalized delayfDτ .

The system can tolerate aboutfDτ ≤ 10−2 whenγ = 10 dB
(see Fig. 2) and aboutfDτ ≤ 10−2.5 when γ = 20 dB
(see Fig. 3) to keep the SEP virtually invariant. When the

normalized delayfDτ further increases, the SEP first grows
up, then fluctuates, and finally approaches to a constant. The
fluctuation is due to the tail of the Bessel function [see
Eq. (25)]. In Fig. 3, all numbers of receive antennas are set to
Nr = 1. With the increase of delay, all SEP’s approach to the
constant equal to the SEP withNt = 1, which is also expected
since whenfDτ is too large, the correlation coefficientρ → 0,
making the feedback loop of the TAS-based scheme virtually
broken. This observation also verifies the correctness of our
analytical results for the delayed feedbacks.

VI. CONCLUSIONS

We developed the framework to analyze the SEP for
TAS/MRC scheme with perfect and delayed CSI feedbacks
used in wireless networks. Specifically, we derived the general
closed-form SEP expressions when considering perfect feed-
backs. For the system with delayed feedbacks, we obtained a
set of closed-form SEP expressions under a number of special
cases. In all above situations, the Chernoff-bounds of SEP’s are
derived. Our analyses showed that while the antenna diversity
improves the system performance, the feedback delay can
significantly impact the SEP of TAS/MRC scheme.
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