FULL-DUPLEX TRANSMISSION IN PHY AND MAC LAYERS FOR 5G MOBILE WIRELESS NETWORKS

XI ZHANG, WENCHI CHENG, AND HA LIN ZHANG

ABSTRACT

As the fourth-generation (4G) standards have been successfully deployed in all 4G-based wireless communication industries and mobile devices, research attention and the efforts of academia and industry have already moved onto fifth-generation (5G) technologies. While the frequency-division duplexing (FDD) and time-division duplexing (TDD) are widely used in 4G mobile wireless networks, they have their inherent deficiencies of low spectrum efficiency because FDD and TDD are both based on the half-duplex transmission mode. To overcome these problems existing in 4G systems, in this article we propose novel wireless full-duplex transmission schemes in both the PHY and MAC layers for 5G mobile wireless networks to significantly increase the spectrum efficiency. In particular, we first develop the wireless full-duplex model for both bidirectional transmission and unidirectional transmission, respectively, taking into account self-interference mitigation. Then we analyze the traditional half-duplex FDD and TDD modes and show the superiority of the wireless full-duplex mode over the half-duplex FDD and TDD modes, respectively. Using our developed wireless full-duplex model, we develop and evaluate the efficient full-duplex power allocation scheme at the PHY layer. Corresponding to full-duplex transmission at the PHY layer, we also develop and analyze the full-duplex MAC protocol at the MAC layer to implement full-duplex transmission over the entire 5G mobile wireless network architecture. Through simulation experiments we show that our proposed schemes can significantly enhance spectrum efficiency for 5G mobile wireless networks.

INTRODUCTION

As fourth-generation (4G) wireless communications and networks are becoming more mature and widely implemented in mobile wireless industrial and commercial products, fifth-generation (5G) mobile and wireless communication technologies are rapidly emerging into research fields. While 5G mobile wireless networks create great potential and flexibility supporting various advanced and high-data rate wireless communications, they also impose new challenges not encountered in 4G wireless systems. This is because 5G mobile wireless networks will require a mix of new system concepts to significantly enhance spectrum efficiency, power/energy efficiency, and advanced wireless network design technologies, which can be achieved by advanced wireless techniques, such as spectrum efficiency optimization, massive multiple-input multiple-output (MIMO), cooperative communications, and so on. Compared with the 4G communication systems and networks, several orders of magnitude higher wireless transmission rates/bandwidth are expected to support various statistical delay-bounded quality-of-service (QoS) provisioning [1, 2, 3] for the bandwidth-intensive and time-sensitive multimedia services over 5G wireless communications networks, which keeps spectrum-efficiency maximization as one of the central issues in designing and implementing 5G mobile wireless networks.

To overcome the above challenges, in this article we propose advanced full-duplex transmission techniques [4, 5, 6, 7, 8] for both physical (PHY) layer and medium access control (MAC) layer protocols as the promising 5G wireless network candidate architectures that can efficiently support 5G mobile wireless communications implementation by significantly boosting spectrum efficiency. This was also motivated by observing the inherent shortcomings of frequency-division duplexing (FDD)-based and time-division duplexing (TDD)-based wireless networks, which are traditionally the two typical half-duplex modes used in current 4G mobile wireless networks. In the half-duplex FDD mode, the uplink and downlink signals are separated by orthogonal frequency-bands, while for the half-duplex TDD mode, the uplink and downlink signals are separated in orthogonal time-slots. Although the FDD mode and the TDD mode are already widely adopted in 4G mobile wireless network standards, they have their inevitable performance constraints. For the FDD mode, the quantization for the channel state information at the transmitter (CSIT), the inflexible bandwidth allocation, and the guard frequency-bands between the uplink and the downlink inevitably affect the optimization of FDD-based wireless networks. On the other hand, for the
The Long-Term-Evolution-Advanced (LTE-A) standards have proposed to use the inband full-duplex relay transmission for wireless networks. The inband full-duplex relay can achieve larger capacity than the outband full-duplex relay if self-interference is significantly mitigated. From LTE/LTE-A to 5G, full-duplex transmission extends from the relay transmissions to point-to-point transmissions [9, 10].

To efficiently implement the wireless full-duplex transmission mode in 5G mobile wireless networks, self-interference needs to be resolved at the PHYS layer and the corresponding higher-layer protocols, which can support the wireless full-duplex transmission mode, also need to be developed. In terms of self-interference mitigation techniques, a great deal of research has been performed, showing the significant feasibility of implementing full-duplex transmissions over wireless communications networks [11, 12]. These works either separate or jointly employ propagation-domain interference suppression (PDIS), analog-domain interference cancellation (AIC), and digital-domain interference cancellation (DIC). PDIS endeavors to mitigate self-interference by avoiding the input of the RF amplifier being overwhelmed due to self-interference [12]. AIC attempts to cancel self-interference to avoid the input of the analog-to-digital converter (ADC) being overwhelmed by self-interference [11, 12]. DIC attempts to cancel residue self-interference due to the non-ideal of the RF amplifier, the non-linearities in the ADC, and the oscillator phase noise [12]. For presentation convenience, the combined AIC and DIC is denoted by ADIC in this article. However, only solving the self-interference mitigation problem does not warrant the implementation of full-duplex based 5G mobile wireless networks, because a large number of existing schemes/protocols at different protocol layers, such as the power allocation scheme at the PHY layer and the MAC protocol at the MAC layer, are already designed and implemented based on the corresponding FDD and TDD modes at the PHY layer [13]. Therefore, if the full-duplex transmission mode is only implemented at the PHY layer, spectrum efficiency cannot be effectively increased because of the constraint caused by the half-duplex transmission mode used at the MAC layer. As a result, we need to develop our full-duplex transmission mode framework across the entire protocol architecture through not only the PHY layer, but also the MAC layer to efficiently implement full-duplex transmission over mobile wireless networks.

At the PHY layer, one of the most important mechanisms to maximize spectrum efficiency lies in its power allocation scheme. The well-known water-filling algorithm can increase spectrum efficiency only for the wireless half-duplex transmission mode. However, due to the impact of self-interference, the traditional water-filling algorithm cannot maximize spectrum efficiency for the wireless full-duplex transmission mode. Therefore, we need to develop an efficient power allocation scheme to maximize spectrum efficiency for the wireless full-duplex transmission mode.

In this article we first analyze and show the superiority of the wireless full-duplex mode over the FDD and TDD modes. Then we develop the full-duplex power allocation scheme to maximize spectrum efficiency for the full-duplex based 5G mobile wireless networks. We show that full-duplex power allocation follows a water-filling-like algorithm when taking into account the impact of self-interference. Corresponding to the full-duplex power allocation scheme at the PHY layer, we also develop a new full-duplex MAC (FD-MAC) protocol at the MAC layer to support both bidirectional (between two wireless nodes) and unidirectional (among three wireless nodes) transmissions, and to resolve the hidden terminal problems in full-duplex based 5G mobile wireless networks.

The rest of this article is organized as follows. We start with a comparison of the wireless full-duplex mode with the FDD and TDD modes, showing the superiority of the former over the latter. Then we develop and evaluate the efficient full-duplex optimal power allocation scheme for full-duplex MIMO transmission at the PHY layer. Corresponding to the developed full-duplex power allocation scheme at the PHY layer, we also develop and analyze the full-duplex MAC protocol at the MAC layer to implement full-duplex transmission over the entire 5G mobile wireless network architecture.

The Full-Duplex System Model for 5G Mobile Wireless Networks

In this article we consider 5G mobile wireless networks that use full-duplex transmission [14]. The base station (BS) is needed to centrally control the user equipments (UEs) in 5G mobile wireless networks. Thus, we focus on full-duplex technique-based 5G mobile wireless networks, an example of which is shown in Fig. 1 with one BS and six UEs. As illustrated in Fig. 1, the BS communicates directly with the UEs. There are two types of transmissions in full-duplex technique-based 5G mobile wireless networks: the two-node (one of which is the BS node) full-duplex wireless bidirectional transmission and the three-node (one of which is the BS node as the relay node) full-duplex wireless unidirectional transmission.
In this article, we use the term of node to represent either the BS or the UE in the full-duplex technique-based 5G mobile wireless network. Also corresponds to, for example, BT-1 and BT-2 in Fig. 1). As shown in Fig. 2b, nodes C, D, and E’s PHY layer connection which also corresponds to, for example, UT-1 and UT-2 in Fig. 1).

Figure 1. An example of the full-duplex based 5G mobile wireless network.

FULL-DUPLICATE MODE OVER THE TDD MODE

We analyze and show the superiority of the wireless full-duplex mode over the FDD and TDD modes.

The Advantages of the Full-Duplex Mode over the FDD Mode

The wireless full-duplex mode can significantly increase spectrum efficiency compared with the FDD mode. The FDD mode affects the spectrum efficiency in the following aspects.

The Quantization for the CSIT: In the FDD mode, the uplink and the downlink use fixed frequency-bands (channels). These different channels are orthogonal and have different frequency responses. Thus, to obtain the CSIT, the receiver needs to quantize and feedback the channel state information to the transmitter. The quantization will inevitably degrade the quality of the CSIT. However, for the full-duplex mode with bidirectional transmission, because the same frequency band is used, the uplink channel and the downlink channel responses are reciprocal to each other. By estimating the channel on the return link, the user equipment (UE) can obtain an estimation of the channel, thus avoiding the quantization and delivery for the CSIT.

The Inflexible Bandwidth Allocation: For a large number of data traffic and multimedia services, it is desirable that the bandwidth can be dynamically adjusted according to the traffic demand. In the FDD mode, the uplink and the downlink use fixed bandwidth that cannot be dynamically changed according to the traffic demand. However, in the full-duplex mode, the entire bandwidth can be shared by the uplink and the downlink simultaneously. Also, by adjusting the number of allocated subframes, the bandwidth can be dynamically reallocated.

The Guard Frequency Bands Between the Uplink and the Downlink: In the FDD mode, the guard frequency bands are extra overhead of the frequency resource. However, in the full-duplex mode, since the uplink channel and the downlink channel share the same frequency bands, there is no need for the guard frequency bands, which saves bandwidth resources.

The Advantages of the Full-Duplex Mode over the TDD Mode

The wireless full-duplex mode can significantly increase spectrum efficiency compared with the TDD mode because of the following reasons.

The Duplexing Delay in MAC: In the TDD mode, because the uplink transmission and the downlink transmission alternate in the time...
domain, the service is discontinuous, thus causing duplexing delay between different uplink/downlink frames. To avoid long duplexing delay, the length of the frame cannot be very large. However, if the frame is too short, the overhead of the transmit/receive transition gap (TTG) and receive/transmit transition gap (RTG) will be too large. Thus, the duplexing delay cannot be avoided in the TDD mode. By contrast, in the full-duplex mode, since the uplink frames and the downlink frames are continuous, there is no duplexing delay.

The Out-of-Date CSIT: In the TDD mode, because of the duplexing delay, the CSIT may be out-of-date. In particular, for the time-varying channels where channel states vary quickly, the CSIT will deviate from the actual channel state during the delay time between two uplink/downlink frames, thus becoming out-of-date. However, in the full-duplex mode, there is no duplexing delay, and thus there is no CSIT outdating problem, which also helps enhance spectrum efficiency.

The Guard Intervals Between the Uplink and the Downlink: The TDD mode needs the guard intervals (TTG to switch from transmit mode to receive mode; RTG to switch from receive mode to transmit mode) to implement the transmit/receive mode switching. The overhead in the TTG is large when the wireless cells are too large. Thus, the guard intervals waste time-slot resources in TDD-based wireless networks. However, in the full-duplex mode, there is no need for the guard intervals, which saves time-slot resources.

The above analyses show that the full-duplex mode has a number of significant advantages over the FDD and TDD modes. To maximize spectrum efficiency, in the following we develop the efficient schemes/protocols in both the physical (PHY) layer and the medium access control (MAC) layer, respectively, for full-duplex mode based 5G mobile wireless networks.

Full-Duplex Power Allocations

In this section we build the full-duplex transmission models and the self-interference mitigation model, respectively. Then, based on this self-interference mitigation model, we formulate spectrum efficiency optimization problems and solve them to derive the optimal full-duplex power allocation schemes for two-node full-duplex wireless bidirectional transmission and the three-node full-duplex wireless unidirectional transmission, respectively.

Full-Duplex Multiplexing MIMO Bidirectional and Unidirectional Transmissions Models

We build a model for two-node full-duplex wireless bidirectional transmission [2] and three-node full-duplex wireless unidirectional transmission [1], as illustrated in Fig. 2, where nodes A, B, and D need to mitigate self-interference from the local transmitter. The transmit power of nodes A, B, C, and D for the ith singular-value channel are denoted by $P_{Ai}^{(i)}$, $P_{Bi}^{(i)}$, $P_{Ci}^{(i)}$, and $P_{Di}^{(i)}$, respectively. Under our proposed full-duplex multiplexing MIMO scheme, we suppose that nodes A, B, C, D, and E employ N_t transmit antennas and N_r receive antennas, respectively (see Figs. 2a and 2b).

Self-Interference Mitigation Modeling

We define κ ($0 < \kappa \leq 1$) as the self-interference mitigation coefficient for the node with full-duplex wireless transmission. The value of κ depends on a number of factors, such as system bandwidth, antenna displacement error, transmit signal amplitude difference, and so on [12]. When κ approaches 0, it implies that self-interference causes large interference on wireless full-duplex transmission. When κ approaches 1, it means that self-interference causes little interference on wireless full-duplex transmission.

The self-interference mitigation coefficients characterize the effect of self-interference mitigation jointly using the propagation-domain...
When the residual self-interference is very large, the effective received signal power at the receiver of full-duplex node becomes very small. When the residual self-interference is very small, the effective received signal power at the receiver of full-duplex node gets very large.

When the residual self-interference is very large, the effective self-interference is very large, the effective self-interference is very small.

For two-node full-duplex wireless bidirectional transmission, both nodes (nodes A and B) need to tolerate residual self-interference after being processed by PDIS and ADIC. For three-node full-duplex wireless unidirectional transmission, only the node that is transmitting and receiving (node D) needs to tolerate residual self-interference after being processed by PDIS and ADIC. The parameters κ_a, κ_b, and κ_d denote the self-interference mitigation coefficients for nodes A, B, and D, respectively.

THE OPTIMAL POWER ALLOCATIONS FOR FULL-DUPLEX MULTIPLEXING MIMO 5G WIRELESS NETWORKS

In contrast to the power allocation for wireless half-duplex transmission, the full-duplex wireless power allocation scheme needs to take into account self-interference, which is characterized by the self-interference mitigation coefficient. There exist some initial research works on optimizing transmit power to maximize the transmission rate in bidirectional [15, 16] and unidirectional [17, 18] full-duplex wireless networks. For bidirectional and unidirectional topologies, the authors of [15, 17] derived the bounds on the achievable transmission rate of bidirectional and unidirectional full-duplex transmissions under the standard isotropic Rayleigh-fading model for wireless signal propagation. For full-duplex wireless-powered communication networks, the optimal resource allocation can maximize the weighted sum-rate [16]. For cognitive-radio unidirectional full-duplex wireless networks, the optimal power allocation scheme (the outage constrained power allocation) can minimize the overall outage probability in the cognitive-radio unidirectional full-duplex networks without requiring the instantaneous CSI across the wireless links between the primary and secondary users [18]. However, these works mainly focus on specialized channel models. The optimal full-duplex power allocation scheme required for the more generic and more practical wireless channel models remains an open and challenging problem.

We define the transmission rates for the two-node full-duplex wireless bidirectional (unidirectional) transmission as the sum of the transmission rates from node A (C) to node B (D) and from node B (D) to node A (E). Under our proposed multiplexing MIMO-based full-duplex 5G mobile wireless networks, we can derive the transmission rate for the two-node full-duplex wireless bidirectional transmission as $R_{\text{opt}} = \sum_{j=1}^{N_t} \left[\log_2 \left(1 + \kappa_a \gamma_a(j) P_a(j) + \gamma_b(j) P_b(j) \right) \right] + \log_2 \left(1 + \frac{\gamma_d(j) P_d(j)}{\gamma_c(j) P_c(j)} \right)$, and the transmission rate for the three-node full-duplex wireless unidirectional transmission as $R_{\text{opt}} = \sum_{j=1}^{N_t} \left[\log_2 \left(1 + \kappa_a \gamma_a(j) P_a(j) + \log_2 \left(1 + \frac{\gamma_b(j) P_b(j)}{\gamma_d(j) P_d(j)} \right) \right) \right] + \log_2 \left(1 + \frac{\gamma_c(j) P_c(j)}{\gamma_d(j) P_d(j)} \right)$, respectively, where N_r is the number of transmit antennas, N_t is the number of receive antennas, and i denotes the ith transmit antenna (we suppose all channels are full rank, $1 \leq i \leq N_r$, and $N_f \leq N_c$), $\gamma_a(j)$, $\gamma_b(j)$, and $\gamma_c(j)$ are the power gains of the ith singular-value channel corresponding to channels from node B to node A, from node A to node B, from node C to node D, and from node D to node E, respectively. Then we can formulate the spectrum efficiency optimization problem for the two-node full-duplex MIMO wireless bidirectional transmission, denoted by P_1, as follows:

$$P_1: \max_{P_a, P_b, P_c, P_d} \{ \mathbb{E}_\gamma \{ R_{\text{opt}} \} \} \tag{1}$$

$$\text{s.t.} \quad \mathbb{E}_\gamma \left\{ \sum_{i=1}^{N_t} \left[P_a(j) + P_b(j) \right] \right\} \leq \bar{P}$$

where i denotes the ith transmit antenna, $\mathbb{E}_\gamma \{ \}$ denotes the expectation over γ, and \bar{P} denotes the average transmit power constraint. Because full-duplex wireless transmission consists of different data flows from different nodes using the same frequency band at the same time, we use the average power constraint over multiple nodes.

Using the powerful Lagrangian method, we can solve problem P_1 to derive the optimal power allocation scheme for the two-node full-duplex MIMO bidirectional transmission as follows:

$$\begin{align*}
P_a(j) &= \frac{1}{\gamma_0} - \frac{1}{\kappa_a \gamma_a(j)}; \\
P_b(j) &= \frac{1}{\gamma_0} - \frac{1}{\kappa_b \gamma_b(j)}; \\
P_c(j) &= \frac{1}{\gamma_0} - \frac{1}{\kappa_d \gamma_d(j)}; \\
P_d(j) &= \frac{1}{\gamma_0} - \frac{1}{\kappa_c \gamma_c(j)}
\end{align*}$$

$$\mathbb{E}_\gamma \left\{ \sum_{i=1}^{N_t} \left[P_a(j) + P_b(j) \right] \right\} = \bar{P}.$$
where \(i \) denotes the \(i \)-th transmit antenna and \(\kappa_d \) denotes the self-interference mitigation coefficient of node D. From Eq. 3 we can observe that self-interference only affects the effective received power of the full-duplex node (node D) in three-node full-duplex wireless unidirectional transmission.

Different from the half-duplex power allocation scheme where there is no self-interference impact, the design of a full-duplex power allocation scheme needs to take into account the impact of self-interference, which is characterized by the self-interference mitigation coefficients: \(\kappa_{a}, \kappa_{p} \), and \(\kappa_{d} \). When residual self-interference is very large (the self-interference mitigation coefficient is very close to 0), the effective received signal power at the receiver of the full-duplex node becomes very small. When residual self-interference is very small (the self-interference mitigation coefficient is very close to 1), the effective received signal power at the receiver of the full-duplex node becomes very large.

The Full-Duplex MAC Protocol

The optimal full-duplex power allocation can maximize the spectrum efficiency of full-duplex transmission at the PHY-layer. However, to minimize the collisions among all full-duplex transmissions in the full-duplex technique-based 5G mobile wireless networks, the full-duplex MAC protocol, which can significantly reduce the collision probability among all full-duplex transmissions in the full-duplex technique-based 5G mobile wireless networks, is also highly demanded [19, 20]. Jointly optimizing the full-duplex power allocation scheme and the full-duplex MAC protocol, the spectrum efficiency and throughput of full-duplex wireless networks can be maximized. The full-duplex MAC protocol needs to support not only bidirectional full-duplex transmissions, but also unidirectional full-duplex transmissions in full-duplex based 5G mobile wireless networks. Also, the traditional hidden terminal problem [13] in full-duplex based 5G mobile wireless networks needs to be resolved.

To overcome these challenges, we further propose the RTS/CTS-based full-duplex MAC protocol, called the RTS/full-duplex clear-to-send (FCTS) mechanism, to achieve the following goals:

- Both bidirectional and unidirectional transmissions can be supported.
- All hidden terminal problems in wireless full-duplex networks have been resolved.

We denote the first transmission (corresponding to the transmission from node A to node B in Fig. 2a, and the transmission from node C to node D in Fig. 2b, respectively) and the second transmission (corresponding to the transmission from node B to node A in Fig. 2a, and the transmission from node D to node E in Fig. 2b, respectively) in one time full-duplex transmission by FD-T1 and FD-T2, respectively.

Before developing the FD-MAC protocol, we need to choose the basic mechanism between the ACK mechanism and the RTS/CTS mechanism. Clearly, since the destination node needs to keep on receiving while some neighbors do not know that the node is receiving, the hidden terminal problem exists in wireless half-duplex networks. The RTS/CTS mechanism is introduced to efficiently avoid the hidden terminal problem. In wireless full-duplex networks, it seems that there is no need for the RTS/CTS mechanism to avoid the hidden terminal problem since the node can send signals when the node is receiving data. However, notice that for wireless unidirectional links, since node E only works in the half-duplex transmission mode and it does not send any signal in the ACK mechanism, the hidden terminal problem is still present in wireless full-duplex networks if we employ the ACK mechanism. The hidden terminal problem of full-duplex transmission arises from three-node wireless unidirectional transmission. For wireless unidirectional transmission with nodes C, D, and E, node C and node E may be out of radio range of each other. If node C starts a full-duplex transmission (node C sends its own data to node D while node D transmits its own data to node E) while node E starts another full-duplex transmission (node E sends its own data to node D while node D transmits its own data to node C) simultaneously. In this case, node D is forced to “transmit two signals” and “receive two signals,” thus causing collisions on node D. Therefore, we turn to developing the RTS/CTS based FD-MAC protocol for wireless full-duplex networks.

In our FD-MAC protocol, we use the RTS and the FCTS frames to finish the handshake process. The RTS frame includes the source address of the FD-T1, the destination address of the FD-T1, and the data length of the FD-T1. The FCTS frame includes the source addresses of the FD-T1 and the FD-T2, the destination addresses of the FD-T1 and the FD-T2, and the data lengths of the FD-T1 and the FD-T2.

Then we can classify the nodes participating in full-duplex transmission into three categories as follows: 2

- **Type 1**: the node starts with sending an RTS.
- **Type 2**: the node starts with having received an RTS when the destination address in the RTS is the address of this node.
- **Type 3**: the node starts with having received a FCTS.

We denote the nodes of **Type 1**, **Type 2**, and **Type 3** by X, Y, and Z, respectively. The definitions of the short inter-frame space (SIFS) and the distributed inter-frame space (DIFS) are the same as the IEEE 802.11 distributed coordination function and the \(p \)-persistent carrier sense multiple access protocols.

Then we describe the pseudo code for our proposed FD-MAC protocol as follows (we omit the transmission delay in our FD-MAC protocol):

Before developing the FD-MAC protocol, we need to choose the basic mechanism between the ACK mechanism and the RTS/CTS mechanism. Clearly, since the destination node needs to keep on receiving while some neighbors do not know that the node is receiving, the hidden terminal problem exists in wireless half-duplex networks.
The full-duplex MAC protocol needs to support not only the bidirectional full-duplex transmissions, but also the unidirectional full-duplex transmissions in full-duplex based 5G mobile wireless networks. Also, the traditional hidden terminal problem in full-duplex based 5G mobile wireless networks needs to be resolved.

Our proposed FD-MAC protocol

Pseudo code for nodes of Type 1:
1. X sends the RTS to the destination Y, then waits for the FCTS from Y;
2. If (the destination address of FD-T2 in the FCTS is X);
3. After X received the FCTS from Y, X waits for a SIFS time and then waits for another FCTS to Y, then waits for a SIFS time to start the FD-T1 and FD-T2 transmissions with Y;
4. Else (the destination address of FD-T2 in the FCTS is another node Z);
5. X waits for a (2SIFS + FCTS) time and then starts the FD-T1 and FD-T2 transmissions with Y and Z;
6. End if;
7. After the transmissions of the FD-T1 and the FD-T2 (the transmissions will last for the longer time between the FD-T1 and the FD-T2), X waits for a SIFS time and then sends a ACK frame to Y.

Pseudo code for nodes of Type 2:
1. Y received an RTS from X;
2. If (the destination address of the packet from Y is X);
3. Y waits for a SIFS time and then sends the FCTS to X, then Y waits for another FCTS from X;
4. After Y received the FCTS from X, Y waits for a SIFS time and then starts the FD-T1 and FD-T2 transmissions with X;
5. Else (the destination address of the packet from Y is another node Z);
6. Y waits for a SIFS time and then sends the FCTS to X and Z, then Y waits for the FCTS from Z;
7. After Y received the FCTS from Z, Y waits for a SIFS time and then starts the FD-T1 and FD-T2 transmissions with X and Z;
8. End if;

9. After the transmissions of the FD-T1 and the FD-T2 (the transmissions will last for the longer time between the FD-T1 and the FD-T2), Y waits for a SIFS time and then sends a ACK frame to X.

Pseudo code for nodes of Type 3:
1. After Z received a FCTS, Z waits for a SIFS time and then sends a FCTS to Y.
2. After Z sent the FCTS to Y, Z waits for a SIFS time and then starts the FD-T1 and FD-T2 transmissions with X and Y;
3. After the transmissions of the FD-T1 and FD-T2 (the transmissions will last for the longer time between the FD-T1 and the FD-T2), Z waits for a SIFS time and then sends a ACK frame to Y.

To better elaborate on our proposed FD-MAC protocol, we use the bidirectional transmission and unidirectional transmission examples to show the negotiation and transmission processes controlled by our proposed FD-MAC protocol for bidirectional and unidirectional transmissions in terms of the timing sequences as illustrated in Figs. 3a and b, respectively.

As shown in Fig. 3a, if node A, which has the packet to be sent to node B, senses that the channel is idle, the node A starts broadcasting the RTS signal to its neighbors when its back-off counter reaches zero. As soon as the destination node B received the RTS from node A, node B will wait for a SIFS time and then broadcasts the FCTS signal to its neighbors. If node B has no packet to transmit to node A, the FCTS is the same as the CTS used in wireless half-duplex networks. If node B has its packet to send to node A, the FCTS needs to be added with the destination address (node A) of the packet from node B and the length of the packet from node B to node A. The neighbors of node B will receive this FCTS and back off according to the data length of the

Figure 3. The timing sequences for the example cases of bidirectional and unidirectional transmissions controlled by our proposed FD-MAC protocol. a) The example of bidirectional transmission; b) The example of unidirectional transmission.
packet from node B to node A. As soon as node A received the FCCTS, node A waits for a SIFS time and broadcasts another FCCTS to notify the neighbors of node A that it will receive the packet from node B. Then, after a SIFS time, both node A and node B will transmit their packets to each other. The duration of the packet transmission will last for the longer time between the FD-T1 and the FD-T2. Then, after a SIFS time, the ACKs (from node A to node B and from node B to node A, respectively) will be sent and then the current bidirectional transmission ends.

The case for three-node wireless full-duplex unidirectional transmission is shown in Fig. 3b, where node C first starts its transmitting to node D while node D also has its own data to be transmitted to node E. In this case, node C senses that the channel is idle, and when its back-off counter reaches zero it starts to broadcast the RTS to its neighbors. As soon as node D received the RTS from node C, it waits for a SIFS time and then broadcasts the FCCTS to its neighbors, where the FCCTS includes the destination address (node E), the length of the packet from node D to node E, and the length of the packet from node C to node D. The node E will receive the FCCTS from node D. Then, after a SIFS time, node E will broadcast another FCCTS to its neighbors. After another SIFS time, node C and node D will send their packets to node D and node E simultaneously. After the transmission of the data and a SIFS time, node D sends the ACK to node C, and node E transmits the ACK to node D, respectively.

Please note that under the full-duplex MAC protocol, system synchronization is guaranteed through the three-way handshakes protocol using one RTS frame and two FCCTS frames. After the successful three-way handshakes, the two way transmissions (for the two-node bidirectional transmission, from node A to node B and from node B to node A; for the three-node unidirectional transmission, from node C to node D and from node D to node E) are synchronized at the end of the third SIFS of one full-duplex transmission. When the two way transmissions end, because all nodes “know” the longer duration between the two way transmissions, after two SIFSs time periods and the ACK frame interaction, the two-way transmissions are synchronized.

Performance Evaluations

We evaluate the performance of our developed full-duplex power allocation schemes and the FD-MAC protocol, respectively. We set the self-interference mitigation coefficients \(k_a = k_b = k_d = 0.95 \). For the FD-T1 and the FD-T2, we set the packet payload and the channel bit rate to 8184 bits and 1 Mbit/s, respectively. Adopting some values of protocol parameters from the IEEE 802.11 standard and its extended new components (including the FCCTS frame) which are suitable for 5G mobile wireless networks, we set the lengths of the MAC header, the PHY header, the RTS frame, the CTS frame, and the ACK frame to 272 bits, 128 bits, 288 bits, 240 bits, and 240 bits, respectively. Based on the new FCCTS frame proposed for 5G mobile wireless networks, the length of the FCCTS frame is set to be 528 bits. We also set the duration of one time slot, the SIFS frame, and the DIFS frame to be 50 \(\mu s \), 28 \(\mu s \), and 128 \(\mu s \), respectively.

Figure 4 shows the optimal power allocation for node A with two-node full-duplex wireless bidirectional transmission. As illustrated in Fig. 4, under the different settings of \(\kappa_a = \kappa_b = 1 \), 0.6, and 0.5, respectively, the optimal transmit power allocation schemes reflect the water-filling structure. However, when \(\kappa_a \) and \(\kappa_b \) become smaller (for example, \(\kappa_a = \kappa_b = 0.5 \)), the threshold \(\gamma_0 \) gets smaller correspondingly, because the transmit power needs to be increased to compensate for the decrease of the data rate due to large self-interference caused by full-duplex transmission.

Figure 5 plots the transmission rates using
our developed full-duplex power allocation schemes for two-node full-duplex wireless bidirectional transmission and three-node full-duplex wireless unidirectional transmission, where $N_{\text{min}} = \min(N_r, N_t)$ denotes the minimum value between N_r and N_t. As shown in Fig. 5, both bidirectional transmission and unidirectional transmission achieve almost double the rate compared with half-duplex transmission. Unidirectional transmission achieves larger transmission rate than that of bidirectional transmission because self-interference affects only one node (node D) with unidirectional transmission while self-interference affects these two nodes (node A and node B) with bidirectional transmission.

Figure 6 compares the normalized system throughputs versus the transmission probability (p) of each UE using our proposed FD-MAC protocol and the conventional HD-MAC for the wireless network with different numbers of users, where we assume that all full-duplex wireless nodes can fully cancel self-interference. The parameter n is the number of full-duplex wireless nodes in full-duplex wireless networks. Since all full-duplex wireless nodes in the wireless networks can fully cancel self-interference, Fig. 6 also shows the upper-bounds of the normalized system throughputs of using our proposed FD-MAC protocol for full-duplex based 5G mobile wireless networks (the three solid plots are for $n = 10$, $n = 20$, and $n = 30$, respectively).

Conclusions

We proposed to use the wireless full-duplex transmission mode to overcome the deficiencies of the half-duplex modes used in 4G systems and thus significantly increase the spectrum efficiency for 5G mobile wireless networks. The full-duplex mode has a number of significant advantages over the FDD and TDD modes. To implement full-duplex based 5G mobile wireless networks, we developed and analyzed not only self-interference mitigation schemes, but also a full-duplex wireless power allocation scheme and a full-duplex wireless MAC protocol. In particular, we developed a full-duplex wireless power allocation scheme and a full-duplex wireless MAC protocol to maximize the spectrum efficiency of 5G mobile wireless networks, respectively. The obtained simulation results show that our proposed full-duplex wireless power allocation schemes and full-duplex wireless MAC protocol can efficiently increase the spectrum efficiency for 5G mobile wireless networks.

References

XIZHANGL[89, SM'98] received the B.S. and M.S. degrees from Xidian University, Xi’an, China, the M.S. degree from Lehigh University, Bethlehem, PA, USA, all in electrical engineering and computer science, and the Ph.D. degree in electrical engineering and computer science (electrical engineering systems) from The University of Michigan, Ann Arbor, MI, USA. He is currently a professor and the founding director of the Networking and Information Systems Laboratory, Department of Electrical and Computer Engineering, Texas A&M University, College Station. He was a research fellow with the School of Electrical Engineering, University of Technology, Sydney, Australia, and the Department of Electrical and Computer Engineering, James Cook University, Australia. He was with the Networks and Distributed Systems Research Department, AT&T Bell Laboratories, Murray Hill, New Jersey, and AT&T Laboratories Research, Florham Park, New Jersey, in 1997. He has published more than 300 research papers on wireless networks and communications systems, network protocol design and modeling, statistical communications, random signal processing, information theory, and control theory and systems. He received the U.S. National Science Foundation CAREER Award in 2004 for his research in the areas of mobile wireless and multicast networking and systems. He is an IEEE Distinguished Lecturer for both the IEEE Communications Society and the IEEE Vehicular Technology Society. He received Best Paper Awards at IEEE GLOBECOM 2014, IEEE GLOBECOM 2009, IEEE GLOBECOM 2007, and IEEE WCNC 2010. One of his IEEE Journal on Selected Areas in Communications papers has been listed as the IEEE Best Readings (receiving the top citation rate) Paper on Wireless Cognitive Radio Networks and Statistical QoS Provisioning over Mobile Wireless Networking. He also received a TEES Select Young Faculty Award for Excellence in Research Performance from the Dwight Look College of Engineering at Texas A&M University, College Station, in 2006. Prof. Zhang is serving or has served as an editor for IEEE Transactions on Communications, IEEE Transactions on Wireless Communications, and IEEE Transactions on Vehicular Technology, twice as a guest editor for IEEE Journal on Selected Areas in Communications for two special issues on “Broadband Wireless Communications for High Speed Vehicles” and “Wireless Video Transmissions,” an associate editor for IEEE Communications Letters, twice as the lead guest editor for IEEE Communications Magazine for two special issues on “Advances in Cooperative Wireless Networking” and “Underwater Wireless Communications and Networks: Theory and Applications,” and a guest editor for IEEE Wireless Communications Magazine for a special issue on “Next Generation CDMA vs. OFDMA for 4G Wireless Applications,” an editor for Wiley’s Journal on Wireless Communications and Mobile Computing, Journal of Computer Systems, Networking, and Communications, and Wiley’s Journal on Security and Communications Networks, and an area editor for Elsevier’s Journal on Computer Communications, among many others. He is serving on or has served as the TPC Chair for IEEE GLOBECOM 2011, TPC Vice-Chair for IEEE INFOCOM 2010, TPC Area Chair for IEEE INFOCOM 2012, Panel/Demo/Poster Chair for ACM MobiCom 2011, General Vice-Chair for IEEE WCNC 2013, Panel/Demo/Poster Chair for ACM MobiCom 2011, and TPC/General Chair for numerous other IEEE/ACM conferences, symposia, and workshops.

WENCHI CHENG (M’14) received the B.S. degree and Ph.D. degree in telecommunication engineering from Xidian University, China, in 2008 and 2014, respectively. He joined the Department of Telecommunication Engineering, Xidian University, in 2013, as an assistant professor. He worked as a visiting Ph.D. student with Prof. Xi Zhang at the Networking and Information Systems Laboratory, Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, U.S.A., from 2010 to 2011. His research interests focus on 5G wireless networks, wireless full-duplex transmission, statistical QoS provisioning, cognitive radio techniques, and energy efficient wireless networks. He has published multiple papers in the IEEE Journal on Selected Areas in Communications, IEEE Network Magazine, IEEE INFOCOM, IEEE GLOBECOM, IEEE ICC, and so on. He is serving as the Technical Program Committee (TPC) member for IEEE INFOCOM 2016, GLOBECOM 2015, and ICC 2015.