Announcements

• Reading
 • Sackinger Chapter 5
 • Razavi Chapter 4
Agenda

- Optical Receiver Overview
- Transimpedance Amplifiers
 - Common-Gate TIAs
 - Feedback TIAs
 - Common-Gate & Feedback TIA Combinations
 - Differential TIAs
- Integrating Optical Receivers
- Equalization in Optical Front-Ends
Optical Receiver Technology

- Photodetectors convert optical power into current
 - p-i-n photodiodes
 - Waveguide Ge photodetectors

- Electrical amplifiers then convert the photocurrent into a voltage signal
 - Transimpedance amplifiers
 - Limiting amplifiers
 - Integrating optical receiver
Transimpedance Amplifier (TIA)

Transimpedance $Z_T = \frac{\Delta V_o}{\Delta i_i} \ (\Omega)$

Also expressed in units of dΩ by $20 \log(|Z_T|)$

- **Key design objectives**
 - High transimpedance gain
 - Low input resistance for high bandwidth and efficient gain
- For large input currents, the TIA gain can compress and pulse-width distortion/jitter can result
Maximum Currents

- Input Overload Current
 - The maximum peak-to-peak input current for which we can achieve the desired BER
 - Assuming high extinction ratio \(i_{ovl}^{pp} = 2\bar{P}_{ovl} \)

- Maximum Input Current for Linear Operation
 - Often quantified by the current level for a certain gain compression (1dB)
 \[i_{lin}^{pp} < i_{ovl}^{pp} \]
Resistive Front-End

\[R_T = R_{in} = R_L \]

\[BW_{3dB} = \omega_p = \frac{1}{R_{in} C_D} = \frac{1}{R_L C_D} \]

- Direct trade-offs between transimpedance, bandwidth, and noise performance
Agenda

• Optical Receiver Overview

• Transimpedance Amplifiers
 • Common-Gate TIAs
 • Feedback TIAs
 • Common-Gate & Feedback TIA Combinations
 • Differential TIAs

• Integrating Optical Receivers

• Equalization in Optical Front-Ends
Common-Gate TIA

\[R_T = R_D \]

\[R_{in} = \frac{r_o + R_D}{1 + (g_m + g_{mb})r_o} \approx \frac{1}{g_m} \]

- Input resistance (input bandwidth) and transimpedance are decoupled
Common-Gate TIA Frequency Response

Neglecting transistor r_o:

$$\frac{v_{out}}{i_{in}} = \frac{R_D}{1 + s \left(\frac{C_{in}}{g_{m1} + g_{mb1}} \right) (1 + s R_D C_{out})}$$

- Often the input pole may dominate due to large photodiode capacitance ($100 – 500\text{fF}$)
Common-Gate TIA Noise

- Both the bias current source and RD contribute to the input noise current
- RD can be increased to reduce noise, but voltage headroom can limit this
- Common-gate TIAs are generally not for low-noise applications
- However, they are relatively simple to design with high stability

\[\overline{V_{n,\text{out}}}^2 = \left(\overline{I_{n,M2}}^2 + \overline{I_{n,RD}}^2 \right) R_D^2 = 4kT \left(\frac{2}{3} g_m + \frac{1}{R_D} \right) R_D^2 \left(\frac{V^2}{\text{Hz}} \right) \]

\[\overline{I_{n,\text{in}}}^2 = 4kT \left(\frac{2}{3} g_m + \frac{1}{R_D} \right) \left(\frac{A^2}{\text{Hz}} \right) \]

[Razavi]
Regulated Cascode (RGC) TIA

• Input transistor g_m is boosted by common-source amplifier gain, resulting in reduced input resistance

• Requires additional voltage headroom

• Increased input-referred noise from the common-source stage

$$Z_{in}(0) \approx \frac{1}{g_{m1} \left(1 + g_{mB} R_B \right)}$$
CMOS 20GHz TIA

- An additional common-gate stage in the feedback provides further gm-boosting and even lower input resistance.

- Shunt-peaking inductors provide bandwidth extension at zero power cost, but very large area cost.

\[
Z_i \approx \frac{1}{g_{m1} \left(1 + |A_2A_3| \right) + j\omega C_{i,\text{tot}}} \\
A_2 = g_{m2}R_2 \quad A_3 = -g_{m3}R_3
\]
Agenda

- Optical Receiver Overview
- Transimpedance Amplifiers
 - Common-Gate TIAs
 - Feedback TIAs
 - Common-Gate & Feedback TIA Combinations
 - Differential TIAs
- Integrating Optical Receivers
- Equalization in Optical Front-Ends
Feedback TIA w/ Ideal Amplifier

With Infinite Bandwidth Amplifier:

\[Z_T(s) = -R_T \left(\frac{1}{1 + s/\omega_p} \right) \]

\[R_{in} = \frac{R_F}{A+1} \]

\[R_T = \frac{A}{A+1} R_F \]

\[\omega_p = \frac{1}{R_{in}C_T} = \frac{A+1}{R_F(C_D + C_I)} \]

- Input bandwidth is extended by the factor A+1
- Transimpedance is approximately R_F
- Can make R_F large without worrying about voltage headroom considerations
Feedback TIA w/ Finite Bandwidth Amplifier

With Finite Bandwidth Amplifier:

\[A(s) = \frac{A}{1 + \frac{s}{\omega_A}} = \frac{A}{1 + sT_A} \]

\[Z_T(s) = -R_T \left(\frac{1}{1 + s/(\omega_o Q) + s^2/\omega_o^2} \right) \]

\[R_T = \frac{A}{A+1} R_F \]

\[\omega_o = \sqrt{\frac{A+1}{R_F C_T T_A}} \]

\[Q = \sqrt{\frac{(A+1)R_F C_T T_A}{R_F C_T + T_A}} \]

\[R_{in} = \frac{R_F}{A+1} \]

- Finite bandwidth amplifier modifies the transimpedance transfer function to a second-order low-pass function.
Feedback TIA w/ Finite Bandwidth Amplifier

- Non-zero amplifier time constant can actually increase TIA bandwidth!!
- However, can result in peaking in frequency domain and overshoot/ringing in time domain
- Often either a Butterworth \((Q=1/\sqrt{2})\) or Bessel response \((Q=1/\sqrt{3})\) is used
 - Butterworth gives maximally flat frequency response
 - Bessel gives maximally flat group-delay

![Sackinger](image-url)
Feedback TIA Transimpedance Limit

If we assume a Butterworth response for maximally flat frequency response:

\[Q = \frac{1}{\sqrt{2}} \Rightarrow \omega_A = \frac{1}{T_A} = \frac{2A}{R_F C_T} \]

For a Butterworth response:

\[\omega_{3dB} = \omega_0 = \sqrt{\frac{(A+1)\omega_A}{R_F C_T}} = \sqrt{\frac{(A+1)2A}{R_F C_T}} \approx \sqrt{2} \text{ times larger than } T_A = 0 \text{ case of } \frac{A+1}{R_F C_T} \]

Plugging \(R_T = \frac{A}{A+1} R_F \) into above expression yields the maximum possible \(R_T \) for a given bandwidth

\[\sqrt{\frac{(A+1)\omega_A}{\frac{(A+1)}{A} R_T C_T}} \geq \omega_{3dB} \]

Maximum \(R_T \leq \frac{A \omega_A}{C_T \omega^{2}_{3dB}} \)

[**Mohan J SSC 2000**]

- Maximum \(R_T \) proportional to amp gain-bandwidth product
- If amp GBW is limited by technology \(f_T \), then in order to increase bandwidth, \(R_T \) must decrease quadratically!
Feedback TIA

As power supply voltages drop, there is not much headroom left for RD and the amplifier gain degrades

Assuming that the source follower has an ideal gain of 1

\[A = g_{m1}R_D \]

\[R_f = \frac{g_{m1}R_D}{1 + g_{m1}R_D} R_F \]

\[R_{in} = \frac{R_F}{1 + g_{m1}R_D} \]

\[R_{out} = \frac{1}{g_{m2}(1 + g_{m1}R_D)} \]
CMOS Inverter-Based Feedback TIA

- CMOS inverter-based TIAs allow for reduced voltage headroom operation
- Cascaded inverter-gm + TIA stage provide additional voltage gain
- Low-bandwidth feedback loop sets the amplifier output common-mode level

[Li J SSC 2014]
Input-Referred Noise Current

- TIA noise is modeled with an input-referred noise current source that reproduces the output TIA output noise when passed through an ideal noiseless TIA

- This noise source will depend on the source impedance, which is determined mostly by the photodetector capacitance
Input-Referred Noise Current Spectrum

- Input-referred noise current spectrum typically consists of uniform, high-frequency f^2, & low-frequency $1/f$ components

- To compare TIAs, we need to see this noise graph out to $\sim 2X$ the TIA bandwidth
 - Recall the noise bandwidth tables
Input-Refereed RMS Noise Current

- The input-referred rms noise current can be calculated by dividing the rms output noise voltage by the TIA’s midband transimpedance value

\[i_{n,TIA}^{rms} = \frac{1}{R_T} \sqrt{\int_0^{2BW} |Z_T(f)|^2 I_{n,TIA}^2(f)df} \]

- If we integrate the output noise, the upper bound isn’t too critical. Often this is infinity for derivations, or 2X the TIA bandwidth in simulation

- This rms current sets the TIA’s electrical sensitivity

\[i_{sens}^{pp} = 2Q i_{n,TIA}^{rms} \]

- To determine the total optical receiver sensitivity, we need to consider the detector noise and responsivity
Averaged Input-Referred Noise Current Density

- TIA noise performance can also be quantified by the averaged input-referred noise current density

\[i_{n,TIA}^{\text{avg}} = \frac{i_{n,TIA}^{\text{rms}}}{\sqrt{BW_{3dB}}} \]

This quantity has units of \(\left(\frac{\text{pA}}{\sqrt{\text{Hz}}} \right) \).

Note, this is different than averaging the input-referred noise spectrum,

\[I_{n,TIA}^{2}(f) \] over the TIA bandwidth.
The feedback resistor and amplifier front-end noise components determine the input-referred noise current spectrum

\[
I_{n,TIA}(f) = I_{n,res}^2(f) + I_{n,\text{front}}^2(f)
\]

The feedback resistor component is uniform with frequency

\[
I_{n,res}^2(f) = \frac{4kT}{R_F}
\]
FET Feedback TIA Input-Refereed Noise Current Spectrum

- Gate current-induced shot noise

\[I_{n,G}^2 = 2qI_G \]

This is typically small for CMOS designs

- FET channel noise

\[I_{n,D}^2 = 4kT\Gamma g_m \]

\(\Gamma \) is the channel noise factor, typically 0.7 - 3 depending on the process.
Input-Referring the FET Channel Noise

To do this, we could calculate
\[
\frac{i_{n,TIA}}{i_{n,D}} = \frac{\begin{bmatrix} v_{out} \\ i_{n,D} \end{bmatrix}}{Z_T}
\]

But it is easier (and equivalent) to ground the output and calculate
\[
\left(\frac{i_{n,D}}{i_{n,TIA}} \right)^{-1} = \frac{1}{sC_T + \frac{1}{R_F}}
\]

\[
i_{n,D} = g_m v_{n,TIA} = \frac{g_m i_{n,TIA}}{sC_T + \frac{1}{R_F}} = \frac{g_m R_F}{1 + sR_F C_T} i_{n,TIA}
\]

where \(C_T = C_D + C_I \), the summation of the detector and amplifier input capacitance.

\[
\left(\frac{i_{n,D}}{i_{n,TIA}} \right)^{-1} = \frac{1 + sR_F C_T}{g_m R_F}
\]

Using this high-pass transfer function, the input-referred FET channel noise is
\[
I_{n,front,D}^2(f) = \frac{1 + (2\pi f R_F C_T)^2}{(g_m R_F)^2} \cdot 4kT g_m
\]

\[
= 4kT \left(\frac{1}{g_m R_F^2} \right) + 4kT \left(\frac{(2\pi C_T)^2}{g_m} \right) f^2
\]

Uniform and \(f^2 \) component!
Total Input-Referred FET Feedback TIA Noise

\[I_{n,TIA}^2(f) = \frac{4kT}{R_F} + 2qI_G + 4kT \left(\frac{1}{g_m R_F^2} \right) + 4kT \left(\frac{2\pi C_T}{g_m} \right)^2 f^2 \]

- Feedback Resistor
- Gate Shot Noise
- FET Channel Noise

• Note that the TIA input-referred noise current spectrum begins to rise at a frequency lower than the TIA bandwidth.
Agenda

• Optical Receiver Overview

• Transimpedance Amplifiers
 • Common-Gate TIAs
 • Feedback TIAs
 • Common-Gate & Feedback TIA Combinations
 • Differential TIAs

• Integrating Optical Receivers

• Equalization in Optical Front-Ends
Common-Gate & Feedback TIA

• Recall that the feedback TIA stability depends on the ratio of the input pole (set by C_D) and the amplifier pole
 • Large variation in C_D can degrade amplifier stability
• Common-gate input stage isolates C_D from input amplifier capacitance, allowing for a stable response with a variety of different photodetectors
• Transimpedance is still approximately $R_F A/(1+A)$
• Transformer-based negative feedback boosts gm with low power and noise overhead
• Input series peaking inductor isolates the photodetector capacitance from the TIA input capacitance
• High frequency techniques allow for 26GHz bandwidth with group delay variation less than 19ps

[Li J SSC 2013]
Agenda

• Optical Receiver Overview
• Transimpedance Amplifiers
 • Common-Gate TIAs
 • Feedback TIAs
 • Common-Gate & Feedback TIA Combinations
 • Differential TIAs
• Integrating Optical Receivers
• Equalization in Optical Front-Ends
Differential TIAs

- Differential circuits have superior immunity to power supply/substrate noise
- A differential TIA output allows easy use of common differential main/limiting amplifiers
 - This comes at the cost of higher noise and power
- How to get a differential output with a single-ended photocurrent input?
 - Two common approaches, based on the amount of capacitance applied at the negative input
Balanced TIA

- A balanced TIA design attempts to match the capacitance of the two differential inputs
 \[C_X \approx C_D \]

- This provides the best power supply/substrate noise immunity, as the noise transfer functions are similar

- Due to double the circuitry, the input-referred rms noise current is increased by \[\sqrt{2} \]

Assuming an high BW amplifier and \(C_T = C_D + C_I \)

\[
Z_T(s) = \frac{v_{OP} - v_{ON}}{i_i} = \left(\frac{A}{A+1} \right) R_F \left(1 + \frac{sC_T R_F}{A+1} \right)
\]

Same transfer function as the single-ended design
Pseudo-Differential TIA

- A pseudo-differential TIA design uses a very large capacitor at the negative input, such that it can be approximated as an AC ground: \(C_X \rightarrow \infty \)

- While not good to reject power supply/substrate noise, it does provide significant filtering of the \(R_F' \) noise.

- The differential transimpedance is approximately doubled relative to the single-ended case.

Assuming an high BW amplifier and \(C_T = C_D + C_I \):

\[
Z_T(s) = \frac{v_{OP} - v_{ON}}{i_i} = \left(\frac{2A}{A+2} \right)R_F \frac{1}{1 + sC_T R_F} \left(\frac{A}{2} + 1 \right)
\]
Offset Control

- Due to the single-ended photodetector signal, the differential output signal swings from 0 to V_{ppd}, which can limit the dynamic range.

- Adding offset control circuitry can allow for an output swing of $\pm V_{ppd}/2$.
Differential Shunt Feedback TIA
Agenda

• Optical Receiver Overview

• Transimpedance Amplifiers
 • Common-Gate TIAs
 • Feedback TIAs
 • Common-Gate & Feedback TIA Combinations
 • Differential TIAs

• Integrating Optical Receivers

• Equalization in Optical Front-Ends
Optical RX Scaling Issues

- Traditionally, TIA has high R_T and low R_{in}
 \[R_T = R_F \left(\frac{A}{1 + A} \right) \]
 \[\omega_{3dB} \approx \frac{1 + A}{R_F C_{IN}} \]

- Headroom/Gain issues in 1V CMOS
 - $A \approx 2 - 3$

- Power/Area Costs
 - TIA $I_D \propto (R_T C_{IN})^2 f_{3dB}^4$
 - LA $I_D \propto f_{3dB}^2$

- $V_A = V_{GS1} + V_{GS2} \approx 0.8 \times VDD$
- $A \approx g_{m1} R_D = \frac{\alpha (VDD - V_A)}{VOD} \approx \frac{\alpha (0.2 \times VDD)}{VOD}$
Integrating Receiver Block Diagram

\[V_0 < V_1 \rightarrow D[0]=1 \]

\[\Delta V_b \]

\[V_{in} \]

\[T_b \]

\[P_{in} \]

\[I_{pd} \]

\[C_{in} \]

\[I_{avg} \]

\[V_{set} \]

\[C_p \]

\[C_r \]

\[C_z \]

\[V_{1} \]

\[V_{0} \]

\[D_{RX}[0] \]

\[\Phi[1] \]

\[\Phi[0] \]

\[\Phi[2] \]

[Emami VLSI 2002]
Demultiplexing Receiver

- Demultiplexing with multiple clock phases allows higher data rate
 - Data Rate = #Clock Phases x Clock Frequency
 - Gives sense-amp time to resolve data
 - Allows continuous data resolution
1V Modified Integrating Receiver

Differential Buffer
- ☀ Fixes sense-amp common-mode input for improved speed and offset performance
- ☀ Reduces kickback charge
- ☹ Cost of extra power and noise

Input Range = 0.6 – 1.1V
Receiver Sensitivity Analysis

Max $\Delta V_{\text{in}}(\Delta I_{\text{AVG}}) = 0.6mV$

Clock Jitter Noise $\sigma_{\text{clk}} = \left(\frac{\sigma_j}{T_b}\right)\Delta V_b \approx 0.65mV$ at 16Gb/s

Total Input Noise $\sigma_{\text{tot}} = \sqrt{\sigma_{\text{samp}}^2 + \sigma_{\text{buffer}}^2 + \sigma_{\text{SA}}^2 + \sigma_{\text{clk}}^2} = 1.59mV$

ΔV_b for BER = $10^{-10} = 6.4\sigma_{\text{tot}} + \text{Offset} = 11.9mV$

$\sigma_{\text{samp}} = \sqrt{\frac{2kT}{C_{\text{samp}}}} = 0.92mV$ $\sigma_{\text{buffer}} = 1.03mV$ $\sigma_{\text{SA}} = 0.45mV$

$P_{\text{avg}} = \frac{\Delta V_b \left(C_{pd} + C_{in} \right)}{\rho T_b}$

<table>
<thead>
<tr>
<th>Gb/s</th>
<th>P_{avg} (dBm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>-9.8</td>
</tr>
<tr>
<td>16</td>
<td>-7.8</td>
</tr>
</tbody>
</table>
Integrating Receiver Sensitivity

- **Test Conditions**
 - 8B/10B data patterns (variance of 6 bits)
 - Long runlength data (variance of 10 bits)

- **BER < 10^{-10}**

[Palermo JSSC 2008]
Integrating RX with Dynamic Threshold

- Dynamic threshold adjustment allows for un-coded data

[Nazari ISSCC 2012]
Integrating RX with Dynamic Threshold

[Nazari ISSCC 2012]
Agenda

• Optical Receiver Overview

• Transimpedance Amplifiers
 • Common-Gate TIAs
 • Feedback TIAs
 • Common-Gate & Feedback TIA Combinations
 • Differential TIAs

• Integrating Optical Receivers

• Equalization in Optical Front-Ends
Low-BW TIA & CTLE Front-End

- Improved sensitivity is possible by increasing the first stage feedback resistor, resulting in a high-gain low-bandwidth TIA.

- The resultant ISI is cancelled by a subsequent CTLE.
Active CTLE Example

Channel Response w/ RX CTLE Eq

Frequency (GHz)

Channel Response (dB)

6Gb/s Eye - Refined BP Channel w/ No Eq

Voltage (V)

Time (ps)

6Gb/s Eye - Refined BP Channel w/ RX CTLE Eq

Voltage (V)

Time (ps)
Low-BW TIA & CTLE Front-End

- Significant reduction in feedback resistor noise
- Low-frequency input and post amplifier noise is also reduced

\[\tilde{I}_{n,\text{in,TSFE}}^2(f) = \frac{4kT}{R_F n^2} + \frac{4kT\gamma}{g_m R_F^2} + \frac{4kT\gamma}{g_m,\text{post}} R_F^2 \left(\frac{f}{BW} \right)^2 \]

\[+ \frac{4kT\gamma}{g_m,\text{post}} R_F^2 \left(\frac{f}{BW} \right)^4 \]

\[= \frac{4kT}{R_F n^2} + \frac{4kT\gamma}{g_m R_F^2 n^4} + \frac{4kT\gamma}{g_m,\text{eq}} R_F^2 \left(\frac{f}{BW} \right)^2 \]

\[+ \frac{4kT\gamma}{g_m,\text{eq}} R_F^2 \left(\frac{f}{BW} \right)^4 \]

\[\text{[Li J SSC 2014]} \]
Low-BW TIA & CTLE Front-End

[Li JSSC 2014]

25Gb/s Eye Diagram

Integrated noise power in the input-referred current

SF TIA
Post-amp/EQ noise
Amp noise
R_F noise

TSFE ($n = 2$)
TSFE ($n = 3$)

145
550
1200

R_F (Ω)

BER

OMA [dBm]
Low-BW TIA & DFE RX

- In a similar manner, a high-gain low-bandwidth TIA is utilized
- The resultant ISI is cancelled by a subsequent 1-tap loop-unrolled DFE
DFE Example

- If only DFE equalization, DFE tap coefficients should equal the unequalized channel pulse response values \([a_1 \ a_2 \ ... \ a_n]\)

- With other equalization, DFE tap coefficients should equal the pre-DFE pulse response values
 - DFE provides flexibility in the optimization of other equalizer circuits
 - i.e., you can optimize a TX equalizer without caring about the ISI terms that the DFE will take care of

\[
[w_1 \ w_2]=[a_1 \ a_2]
\]
Low-BW TIA & DFE RX

- As RF is increased, the main cursor increases and the SNR improves if ISI is cancelled by a DFE
- Large performance benefit with a low-complexity 1-tap DFE

[Ozkaya JSSC 2017]
• Self-referenced TIA is used for differential generation
• Actual 64Gb/s pulse response has a significant pre-cursor ISI tap, which requires a 2-tap TX FFE
Next Time

- Main/Limiting Amplifiers