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Announcements

• HW1 due NOW

• HW2 posted on website and due 2/5

• Current Reading
• Chapter 3.4, 3.6 – 3.7

• For next time
• TBD

2



Agenda

• Differential transmission lines
• Interconnect measurement techniques

• Time-domain reflectometry (TDR)
• Network analyzer

• S-parameters

• Majority of today’s material from Dally 
Chapter 3.4, 3.6 - 3.7

• Some s-parameter material from Sackinger
“Broadband Circuits” text
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Differential Transmission Lines
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• Differential signaling advantages
• Self-referenced 
• Common-mode noise rejection
• Increased signal swing
• Reduced self-induced power-

supply noise

• Requires 2x the number of 
signaling pins relative to single-
ended signaling
• But, smaller ratio of supply/signal 

(return) pins
• Total pin overhead is typically 1.3-

1.8x (vs 2x)

[Hall]



Balanced Transmission Lines

• Even (common) mode 
excitation
• Effective C = CC 

• Effective L = L + M

• Odd (differential) mode 
excitation
• Effective C = CC + 2Cd 

• Effective L = L – M
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PI-Termination
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T-Termination
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Interconnect Modeling

• Why do we need interconnect models?
• Perform hand calculations and simulations (Spice, Matlab, etc…)
• Locate performance bottlenecks and make design trade-offs

• Model generation methods
• Electromagnetic CAD tools
• Actual system measurements

• Measurement techniques
• Time-Domain Reflectometer (TDR)
• Network analyzer (frequency domain)
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Time-Domain Reflectometer (TDR)

• TDR consists of a fast step generator and a high-speed 
oscilloscope

• TDR operation
• Outputs fast voltage step onto channel
• Observe voltage at source, which includes reflections
• Voltage magnitude can be converted to impedance
• Impedance discontinuity location can be determined by delay

• Only input port access to characterize channel
9
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[Dally]



TDR Impedance Calculation
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TDR Waveforms (Open & Short)

• Open termination
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Input step at 1ns

2td

2td

• Short termination



TDR Waveforms (Matched & Mismatched)

• Matched termination
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• Mismatched termination 2td
ZT > Z0

ZT < Z0



TDR Waveforms (C & L Discontinuity)
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TDR Rise Time and Resolution

• TDR spatial resolution is set by step risetime

• Step risetime degrades with propagation 
through channel
• Dispersion from skin-effect
• Lump discontinuities low-pass filter the step

• Causes difficulty in estimating L & C values
• Channel filtering can actually compensate 

for lump discontinuity spikes 
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TDR Multiple Reflections
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TDR Waveforms (Multiple Discontinuities)
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Time-Domain Transmission (TDT)
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• Can measure channel transfer function
• Hard to isolate impedance discontinuities, as they are 

superimposed on a single rising edge
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Network Analyzer
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• Stimulates network with 
swept-frequency source

• Measures network response 
amplitude and phase

• Can measure transfer 
function, scattering matrices, 
impedance, …

[Dally]



Transfer Function & Impedance 
Measurements
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[Dally]



Scattering (S) Parameters

• Why S Parameters?
• Easy to measure
• Y, Z parameters need open 

and short conditions
• S parameters are obtained 

with nominal termination
• S parameters based on 

incident and reflected wave 
ratio
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[Dally]



S-Parameter Test Circuits & Meaning
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[Sackinger]

• S11 = Input reflection coefficient
• S21 = Forward transmission coefficient 

• Gain w/ input matching dependency

• S22 = Output reflection coefficient
• 1/S22 = Output return loss

• S12 = Reverse transmission coefficient (isolation)
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Next Time

• S-parameter examples

• Impulse response generation

• Communication techniques
• Eye Diagram
• Intersymbol interference
• Modulation techniques
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