ECEN689: Special Topics in High-Speed Links Circuits and Systems Spring 2010

Lecture 5: Interconnect Measurement Techniques

Sam Palermo Analog & Mixed-Signal Center Texas A&M University

Announcements

- HW1 due NOW
- HW2 posted on website and due 2/5
- Current Reading
 - Chapter 3.4, 3.6 3.7
- For next time
 - TBD

Agenda

- Differential transmission lines
- Interconnect measurement techniques
 - Time-domain reflectometry (TDR)
 - Network analyzer
 - S-parameters
- Majority of today's material from Dally Chapter 3.4, 3.6 - 3.7
- Some s-parameter material from Sackinger "Broadband Circuits" text

Differential Transmission Lines

- Differential signaling advantages
 - Self-referenced
 - Common-mode noise rejection
 - Increased signal swing
 - Reduced self-induced powersupply noise
- Requires 2x the number of signaling pins relative to singleended signaling
 - But, smaller ratio of supply/signal (return) pins
 - Total pin overhead is typically 1.3-1.8x (vs 2x)

Electric field: Odd mode

Magnetic field: Odd mode

Magnetic field: Even mode

[Hall]

Balanced Transmission Lines

- Even (common) mode excitation
 - Effective $C = C_C$
 - Effective L = L + M
- Odd (differential) mode excitation
 - Effective $C = C_C + 2C_d$
 - Effective L = L M

$$Z_{DIFF} = 2Z_{odd}, \quad Z_{CM} = \frac{Z_{even}}{2}$$

(a) Model of a Balanced Line

$$Z_{even} = \left(\frac{L+M}{C_c}\right)^{\frac{1}{2}}$$
$$Z_{odd} = \left(\frac{L-M}{C_c+2C_d}\right)^{\frac{1}{2}}$$

PI-Termination

T-Termination

Interconnect Modeling

- Why do we need interconnect models?
 - Perform hand calculations and simulations (Spice, Matlab, etc...)
 - Locate performance bottlenecks and make design trade-offs
- Model generation methods
 - Electromagnetic CAD tools
 - Actual system measurements
- Measurement techniques
 - Time-Domain Reflectometer (TDR)
 - Network analyzer (frequency domain)

Time-Domain Reflectometer (TDR)

- TDR consists of a fast step generator and a high-speed oscilloscope
- TDR operation
 - Outputs fast voltage step onto channel
 - Observe voltage at source, which includes reflections
 - Voltage magnitude can be converted to impedance
 - Impedance discontinuity location can be determined by delay
- Only input port access to characterize channel

TDR Impedance Calculation

TDR Waveforms (Open & Short)

• Open termination $Z_0=50\Omega$ $T_{d}=1ns$ $Z_T=Open$

Short termination

TDR Waveforms (Matched & Mismatched)

Matched termination

Mismatched termination

TDR Waveforms (C & L Discontinuity)

TDR Rise Time and Resolution

TDR spatial resolution is set by step risetime

 $\Delta x > t_r \upsilon$

- Step risetime degrades with propagation through channel
 - Dispersion from skin-effect
 - Lump discontinuities low-pass filter the step
- Causes difficulty in estimating L & C values
- Channel filtering can actually compensate for lump discontinuity spikes [©]

TDR Multiple Reflections

TDR Waveforms (Multiple Discontinuities)

Time-Domain Transmission (TDT)

- Can measure channel transfer function
- Hard to isolate impedance discontinuities, as they are superimposed on a single rising edge

Network Analyzer

- Stimulates network with swept-frequency source
- Measures network response amplitude and phase
- Can measure transfer function, scattering matrices, impedance, ...

Transfer Function & Impedance Measurements

Test Set for Transfer Function

Test Set for Impedance Measurements

Scattering (S) Parameters

- Why S Parameters?
 - Easy to measure
 - Y, Z parameters need open and short conditions
 - S parameters are obtained with nominal termination
 - S parameters based on incident and reflected wave ratio

S-Parameter Test Circuits & Meaning

- $S_{11} =$ Input reflection coefficient
- S₂₁ = Forward transmission coefficient
 - Gain w/ input matching dependency
- S₂₂ = Output reflection coefficient
 - 1/S₂₂ = Output return loss
- S₁₂ = Reverse transmission coefficient (isolation)

$$S_{21}(s) = [1 + S_{11}(s)]A(s)$$

where A(s) is voltage gain

Next Time

S-parameter examples

- Impulse response generation
- Communication techniques
 - Eye Diagram
 - Intersymbol interference
 - Modulation techniques