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Announcements

• HW1 due 1/28
• One page summary of recent link design paper

• Lecture Reference Material
• Dally, Chapter 3.1 – 3.4
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Agenda

• Transmission Lines
• Propagation constant
• Characteristic impedance
• Loss
• Reflections
• Termination examples
• Differential transmission lines
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Wire Models

• Model Types
• Ideal
• Lumped C, R, L
• RC transmission line
• LC transmission line
• RLGC transmission line

• Condition for LC or RLGC model (vs RC)

4

L
Rf
π20 ≥

Wire R L C >f (LC wire)

AWG24 Twisted Pair 0.08Ω/m 400nH/m 40pF/m 32kHz

PCB Trace 5Ω/m 300nH/m 100pF/m 2.7MHz

On-Chip Min. Width M6 
(0.18µm CMOS node) 40kΩ/m 4µH/m 300pF/m 1.6GHz



RLGC Transmission Line Model
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Time-Harmonic Transmission Line Eqs.

• Assuming a traveling sinusoidal wave with angular frequency, ω
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• Differentiating (3) and plugging in (4) (and vice versa)
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• where γ is the propagation constant
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Transmission Line Propagation Constant

• Solutions to the Time-Harmonic Line Equations: 

7

( ) ( ) ( ) x
r

x
frf eVeVxVxVxV γγ

00 +=+= −

• What does the propagation constant tell us?
• Real part (α) determines attenuation/distance  (Np/m)
• Imaginary part (β) determines phase shift/distance (rad/m)
• Signal phase velocity
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Transmission Line Impedance, Z0

• For an infinitely long line, the voltage/current ratio is Z0 

• From time-harmonic transmission line eqs. (3) and (4) 
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• Driving a line terminated by Z0 is the same as driving an 
infinitely long line

[Dally]



Lossless LC Transmission Lines

• If Rdx=Gdx=0
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No Loss!

• Waves propagate w/o distortion
• Velocity and impedance

independent of frequency
• Impedance is purely real

[Johnson]



Low-Loss LRC Transmission Lines

• If R/ωL and G/ωC << 1

• Behave similar to ideal 
LC transmission line, 
but …
• Experience resistive and 

dielectric loss
• Frequency dependent 

propagation velocity 
results in dispersion

• Fast step, followed by slow 
DC tail
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Skin Effect (Resistive Loss)

• High-frequency current density falls 
off exponentially from conductor 
surface

• Skin depth, δ, is where current falls 
by e-1 relative to full conductor
• Decreases proportional to 

sqrt(frequency)

• Relevant at critical frequency fs
where skin depth equals half 
conductor height (or radius)
• Above fs resistance/loss increases 

proportional to sqrt(frequency)
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[Dally]



Skin Effect (Resistive Loss)
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[Dally]
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Dielectric Absorption (Loss)

• An alternating electric field 
causes dielectric atoms to 
rotate and absorb signal 
energy in the form of heat

• Dielectric loss is expressed 
in terms of the loss 
tangent

• Loss increases directly 
proportional to frequency
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Total Wire Loss
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[Dally]



Reflections & Telegrapher’s Eq.
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Termination Current:

• With a Thevenin-equivalent mode of the line:

• KCL at Termination:
Telegrapher’s Equation or 
Reflection Coefficient

[Dally]



Termination Examples - Ideal
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Z0 = 50Ω, td = 1ns
RT = 50Ω

0
5050
5050

0
5050
5050

5.0
5050

501

=
+
−

=

=
+
−

=

=







+
=

rS

rT

i

k

k

VVV

in (step begins at 1ns)

source

termination



Termination Examples - Open
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RS = 50Ω
Z0 = 50Ω, td = 1ns
RT ~ ∞ (1MΩ)
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Termination Examples - Short
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RS = 50Ω
Z0 = 50Ω, td = 1ns
RT = 0Ω
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Arbitrary Termination Example
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RS = 400Ω
Z0 = 50Ω, td = 1ns
RT = 600Ω
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Lattice Diagram
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RS = 400Ω

RT = 600Ω
Z0 = 50Ω, td = 1ns

in (step begins at 1ns)

Rings up to 0.6V
(DC voltage division)



Termination Reflection Patterns
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RS = 25Ω, RT = 25Ω

krS & krT < 0

Voltages Converge

RS = 25Ω, RT = 100Ω

krS < 0 & krT > 0

Voltages Oscillate

RS = 100Ω, RT = 25Ω

krS > 0 & krT < 0

Voltages Oscillate

RS = 100Ω, RT = 100Ω

krS > 0 & krT > 0

Voltages Ring Up

source

termination

source
termination

source

termination

source

termination



Termination Schemes
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• No Termination
• Little to absorb line energy
• Can generate oscillating 

waveform
• Line must be very short 

relative to signal transition time
• n = 4 - 6 

• Limited off-chip use

• Source Termination
• Source output takes 2 steps up
• Used in moderate speed point-

to-point connections

LCnlnTt triproundr 2=> −

LClt porch 2≅



Termination Schemes
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• Receiver Termination
• No reflection from receiver
• Watch out for intermediate 

impedance discontinuities
• Little to absorb reflections at driver

• Double Termination
• Best configuration for min 

reflections
• Reflections absorbed at both driver 

and receiver

• Get half the swing relative to 
single termination

• Most common termination scheme 
for high performance serial links



Differential Transmission Lines
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• Differential signaling advantages
• Self-referenced 
• Common-mode noise rejection
• Increased signal swing
• Reduced self-induced power-

supply noise

• Requires 2x the number of 
signaling pins relative to single-
ended signaling
• But, smaller ratio of 

supply/signal (return) pins
• Total pin overhead is typically 

1.3-1.8x (vs 2x)

[Hall]

• Even mode
• When equal voltages drive both 

lines, only one mode propagates 
called even more

• Odd mode
• When equal in magnitude, but out 

of phase, voltages drive both lines, 
only one mode propagates called 
odd mode



Balanced Transmission Lines

• Even (common) mode 
excitation
• Effective C = CC 

• Effective L = L + M

• Odd (differential) mode 
excitation
• Effective C = CC + 2Cd 

• Effective L = L – M
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PI-Termination
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T-Termination
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Next Time

• Channel modeling
• Time domain reflectometer (TDR)
• Network analysis
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