ECEN689: Special Topics in High-Speed Links Circuits and Systems Spring 2010

Lecture 33: Optical I/O

Sam Palermo Analog & Mixed-Signal Center Texas A&M University

Announcements

• Final Project Report Due Tomorrow by 5PM

 Project Presentations next Monday May 10, 8-10AM

Agenda

- Electrical Channel Issues
- Optical Channel
- Optical Transmitter Technology
- Optical Receiver Technology
- Optical Integration Approaches

High-Speed Electrical Link System

Channel Performance Impact

 (\mathbf{N})

Voltage

Link with Equalization

Channel Performance Impact

 \geq

Voltage

High-Speed Optical Link System

- Optical interconnects remove many channel limitations
 - Reduced complexity and power consumption
 - Potential for high information density with wavelength-division multiplexing (WDM)

Optical Channels

- Short distance optical I/O channels are typically either waveguide (fiber)-based or free-space
- Optical channel advantages
 - Much lower loss
 - Lower cross-talk
 - Smaller waveguides relative to electrical traces
 - Potential for multiple data channels on single fiber via WDM

Waveguide (Fiber)-Based Optical Links

- Optical fiber loss is specified in dB/km
 - Single-Mode Fiber loss ~0.25dB/km at 1550nm
 - RF coaxial cable loss ~100dB/km at 10GHz
- Frequency dependent loss is very small
 - <0.5dB/km over a bandwidth
 >10THz
- Bandwidth may be limited by dispersion (pulse-spreading)
 - Important to limit laser linewidth for long distances (>1km)

Single-Mode Fiber Loss & Dispersion

Free-Space Optical Links

- Free-space (air or glass) interconnect systems have also been proposed
- Optical imaging system routes light chip-to-chip

Optical Transmitter Technology

- Optical modulation techniques
 - Direct modulation of laser
 - External modulation of continuous-wave (CW) "DC" laser with absorptive or refractive modulators
- Optical sources for chip-to-chip links
 - Vertical-Cavity Surface-Emitting Laser (VCSEL)
 - Electro-Absorption Modulator (EAM)
 - Ring-Resonator Modulator (RRM)
 - Mach-Zehnder Modulator (MZM)

Vertical-Cavity Surface-Emitting Laser (VCSEL)

VCSEL Cross-Section

- VCSEL emits light perpendicular from top (or bottom) surface
- Important to always operate VCSEL above threshold current, I_{TH}, to prevent "turn-on delay" which results in ISI
- Operate at finite extinction ratio (P₁/P₀)

VCSEL Bandwidth vs Reliability

10Gb/s VCSEL Frequency Response [1]

 Mean Time to Failure (MTTF) is inversely proportional to current density squared

$$MTTF = \frac{A}{j^2} e^{\left(\frac{E_A}{k}\right)\left(\frac{1}{T_j} - \frac{1}{373}\right)}$$

[2]

Steep trade-off between bandwidth and reliability

$$MTTF \propto \frac{1}{BW^4}$$

- 1. D. Bossert *et al*, "Production of high-speed oxide confined VCSEL arrays for datacom applications," *Proceedings of SPIE*, 2002.
- 2. M. Teitelbaum and K. Goossen, "Reliability of Direct Mesa Flip-Chip Bonded VCSEL's," LEOS, 2004.

VCSEL Drivers

Current-Mode VCSEL Driver

- Current-mode drivers often used due to linear L-I relationship
- Equalization can be added to extend VCSEL bandwidth for a given current density

VCSEL Driver w/ 4-tap FIR Equalization

S. Palermo and M. Horowitz, "High-Speed Transmitters in 90nm CMOS for High-Density Optical Interconnects," *ESSCIRC*, 2006.

Electro-Absorption Modulator (EAM)

*N. Helman et al, "Misalignment-Tolerant Surface-Normal Low-Voltage Modulator for Optical Interconnects," JSTQE, 2005.

- Absorption edge shifts with changing bias voltage due to the "quantum-confined Stark or Franz-Keldysh effect" & modulation occurs
- Modulators can be surface-normal devices or waveguide-based
- Maximizing voltage swing allows for good contrast ratio over a wide wavelength range
- Devices are relatively small and can be treated as lump-capacitance loads
 - 10 500fF depending on device type

Ring-Resonator Modulator (RRM)

High Frequency Modulation

- Refractive devices which modulate by changing the interference light coupled into the ring with the waveguide light
- Devices are relatively small (ring diameters < 20µm) and can be treated as lumped capacitance loads (~10fF)
- Devices can be used in WDM systems to selectively modulate an individual wavelength or as a "drop" filter at receivers

Optical Device Performance from: I. Young, E. Mohammed, J. Liao, A. Kern, **S. Palermo**, B. Block, M. Reshotko, and P. Chang, "Optical I/O Technology for Tera-Scale Computing," *ISSCC*, 2009. 17

CMOS Modulator Driver

- Simple CMOS-style voltage-mode drivers can drive EAM and RRM due to their small size
- Device may require swing higher than nominal CMOS supply
 - Pulsed-Cascode driver can reliably provide swing of 2xVdd (or 4xVdd) at up to 2FO4 data rate

S. Palermo and M. Horowitz, "High-Speed Transmitters in 90nm CMOS for High-Density Optical Interconnects," *ESSCIRC*, 2006. 18

Mach-Zehnder Modulator (MZM)

- Refractive modulator which splits incoming light into two paths, induces a voltage-controlled phase shift in the two paths, and recombines the light in or out of phase
- Long device (several mm) requires driver to drive low-impedance transmission line at potentially high swing (5V_{ppd})
- While much higher power relative to RRM, they are less sensitive to temperature variations

Optical Receiver Technology

- Photodetectors convert optical power into current
 - p-i-n photodiodes
 - Integrated metal-semiconductormetal photodetector
- Electrical amplifiers then convert the photocurrent into a voltage signal
 - Transimpedance amplifiers
 - Limiting amplifiers
 - Integrating optical receiver

p-i-n Photodiode

Responsivity: $\rho = \frac{I}{P_{opt}} = \frac{\eta_{pd}\lambda q}{hc} = 8 \times 10^5 (\eta_{pd}\lambda) \quad (\text{mA/mW})$ **Ouantum Efficiency:** $\eta_{pd} = 1 - e^{-\alpha W}$ **Transit-Time Limited Bandwidth:** $f_{3dBPD} = \frac{2.4}{2\pi\tau_{tr}} = \frac{0.45v_{sat}}{W}$

- Normally incident light absorbed in intrinsic region and generates carriers
- Trade-off between capacitance and transit-time
- Typical capacitance between 100-300fF

Integrated Ge MSM Photodetector

- Lateral Metal-Semiconductor-Metal (MSM Detector)
- Silicon Nitride Waveguide-Coupled
- Direct Germanium deposition on oxide

Optical Integration Approaches

- Efficient cost-effective optical integration approaches are necessary for optical interconnects to realize their potential for improved power efficiency at higher data rates
- Hybrid integration
 - Optical devices fabricated on a separate substrate
- Integrated CMOS photonics
 - Optical devices part of CMOS chip

Hybrid Integration

[Kromer]

[Schow]

5.25 mm

Wirebonding

Flip-Chip Bonding

[Mohammed]

Short In-Package Traces

Integrated CMOS Photonics

[Batten]

Future Photonic CMOS Chip

 Unified optical interconnect for on-chip core-to-core and offchip processor-to-processor and processor-to-memory

Conclusion

Thanks for the fun semester!