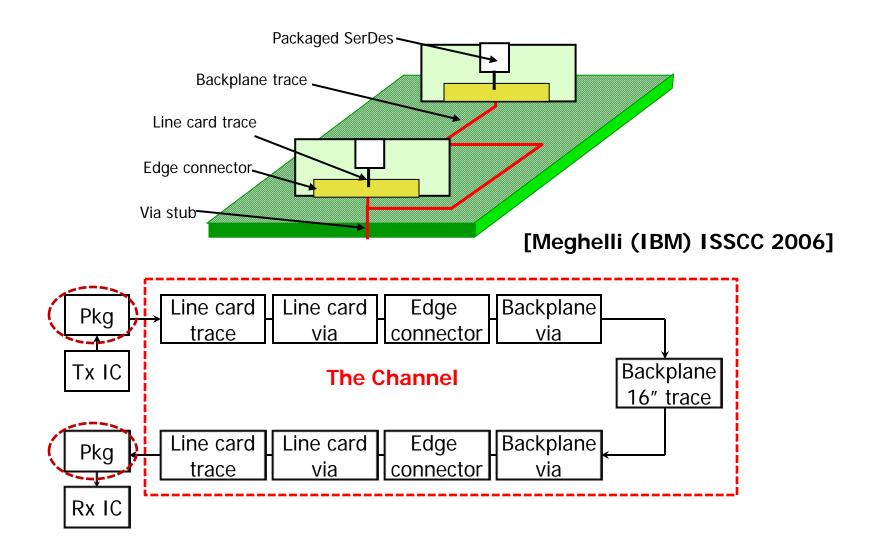
ECEN689: Special Topics in High-Speed Links Circuits and Systems Spring 2012

Lecture 2: Channel Components, Wires, & Transmission Lines

Sam Palermo
Analog & Mixed-Signal Center
Texas A&M University

Announcements

HW1 due NOW


- Lab1 tomorrow in ZACH 203
 - Prelab 1 due tomorrow

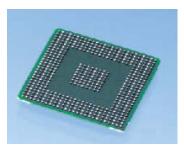
- Reference Material Posted on Website
 - TDR theory application note
 - S-parameter notes

Agenda

- Channel Components
 - IC Packages, PCBs, connectors, vias, PCB Traces
- Wire Models
 - Resistance, capacitance, inductance
- Transmission Lines
 - Propagation constant
 - Characteristic impedance
 - Loss
 - Reflections
 - Termination examples
 - Differential transmission lines

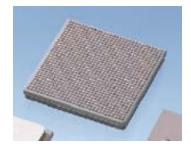
Channel Components

IC Packages


- Package style depends on application and pin count
- Packaging technology hasn't been able to increase pin count at same rate as on-chip aggregate bandwidth
 - Leads to I/O constrained designs and higher data rate per pin

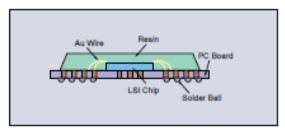
Package Type	Pin Count
Small Outline Package (SOP)	8 – 56
Quad Flat Package (QFP)	64 - 304
Plastic Ball Grid Array (PBGA)	256 - 420
Enhanced Ball Grid Array (EBGA)	352 - 896
Flip Chip Ball Grid Array (FC-BGA)	1089 - 2116


SOP

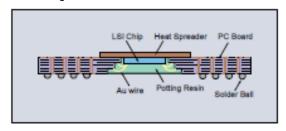

PBGA

QFP

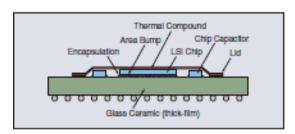
FC-BGA



[Package Images - Fujitsu]

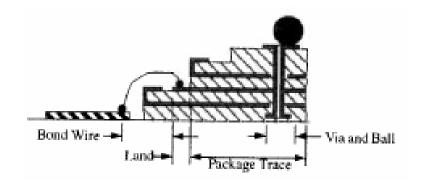

IC Package Examples

- Wirebonding is most common die attach method
- Flip-chip packaging allows for more efficient heat removal
- 2D solder ball array on chip allows for more signals and lower signal and supply impedance


Standard Wirebond Package

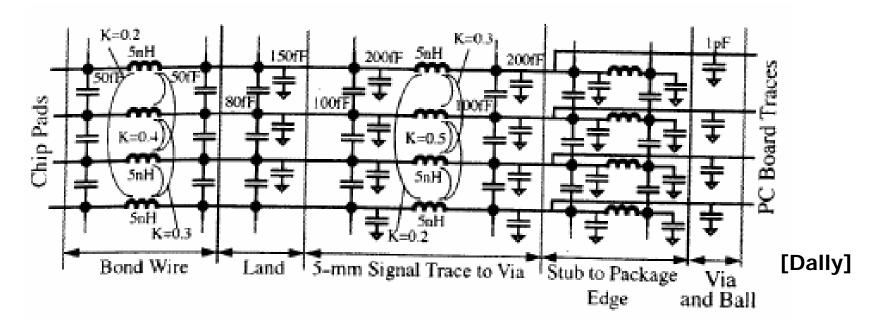
Flip-Chip/Wirebond Package

Flip-Chip/Solder Ball Package



[Package Images - Fujitsu]

IC Package Model

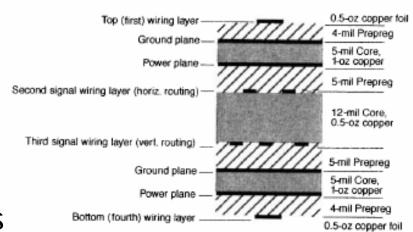

Bondwires

- L ~ 1nH/mm
- •Mutual L "K"
- C_{couple} ~ 20fF/mm

Package Trace

- L $\sim 0.7-1$ nH/mm
- •Mutual L "K"
- C_{layer} ~ 80-90fF/mm
- •C_{couple} ~ 40fF/mm

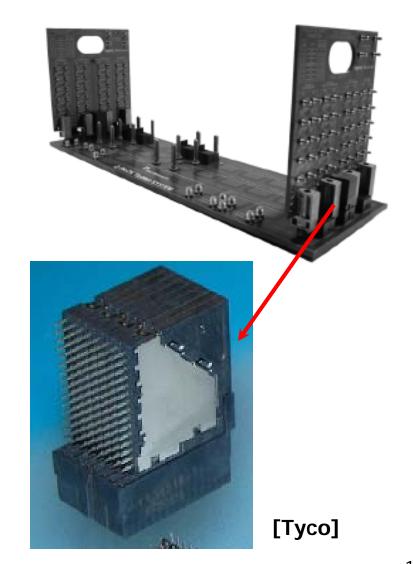
Printed Circuit Boards


 Components soldered on top (and bottom)

- Typical boards have 4-8 signal layers and an equal number of power and ground planes
- Backplanes can have over 30 layers

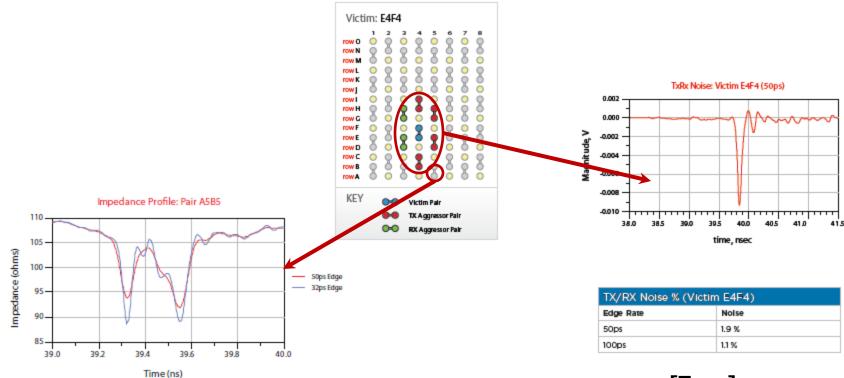
PCB Stackup

- Signals typically on top and bottom layers
- GND/Power plane pairs and signal layer pairs alternate in board interior

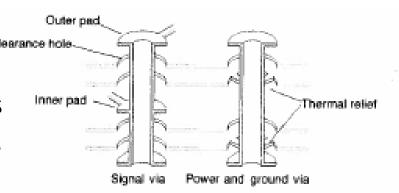

- Typical copper trace thickness
 - "0.5oz" (17.5um) for signal layers
 - "1oz" (35um) for power planes

[Dally]

Connectors

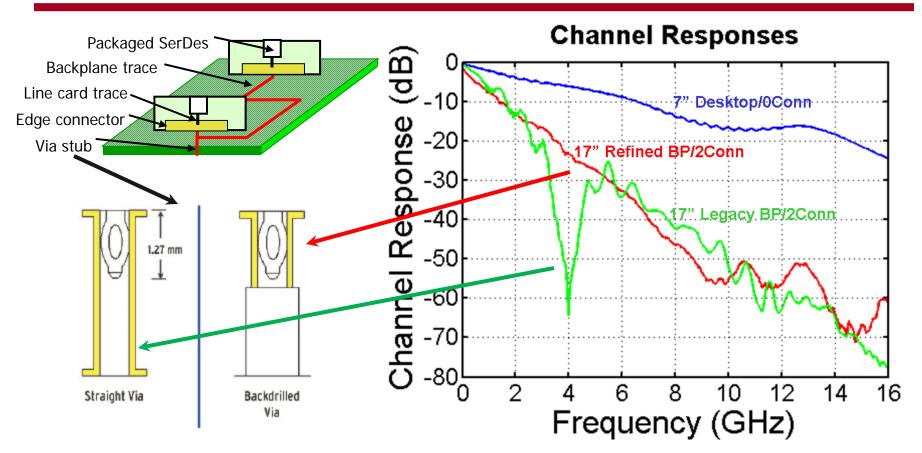

 Connectors are used to transfer signals from board-to-board

 Typical differential pair density between 16-32 pairs/10mm


Connectors

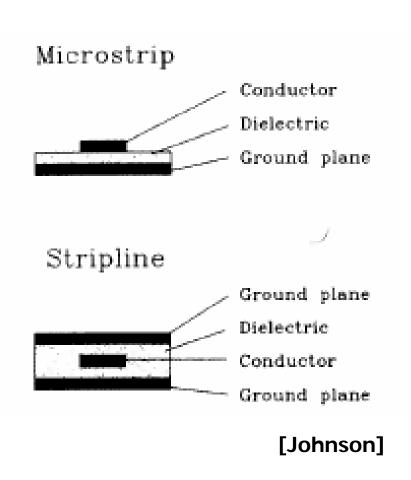
- Important to maintain proper differential impedance through connector
- Crosstalk can be an issue in the connectors

Vias


- Used to connect PCB layers
- Made by drilling a hole through the board which is plated with copper
 - Pads connect to signal layers/traces
 - Clearance holes avoid power planes

[Dally]

- Expensive in terms of signal density and integrity
 - Consume multiple trace tracks
 - Typically lower impedance and create "stubs"


Impact of Via Stubs at Connectors

- Legacy BP has default straight vias
 - Creates severe nulls which kills signal integrity
- Refined BP has expensive backdrilled vias

PCB Trace Configurations

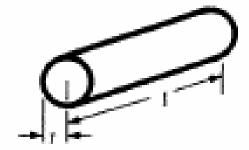
- Microstrips are signal traces on PCB outer surfaces
 - Trace is not enclosed and susceptible to cross-talk
- Striplines are sandwiched between two parallel ground planes
 - Has increased isolation

Wire Models

Resistance

Capacitance

Inductance


Transmission line theory

Wire Resistance

- Wire resistance is determined by material resistivity, ρ, and geometry
- Causes signal loss and propagation delay

$$R = \frac{\rho l}{A} = \frac{\rho l}{wh}$$

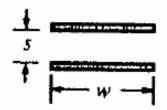
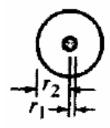

$$R = \frac{\rho l}{A} = \frac{\rho l}{\pi r^2}$$

TABLE 3-1 Resistivity of Common Conductive Materials				
Material	Symbol	ρ(Ω-m)		
Silver	Ag	1.6 × 10		
Copper	Cu	1.7 × 10		
Gold	Au	2.2 × 10		
Aluminum	Al	2.7 × 10		
Tungsten	W	5.5 × 10		

[Dally]


Wire Capacitance

- Wire capacitance is determined by dielectric permittivity, ε, and geometry
- Best to use lowest ε_r
 - Lower capacitance
 - Higher propagation velocity

Parallel Plate

$$C = \frac{w\mathcal{E}}{s}$$

Coaxial

$$C = \frac{2\pi\varepsilon}{\log(r_2/r_1)}$$

Wire Pair

$$C = \frac{\pi \varepsilon}{\log(s/r)}$$

TABLE 3-2 Permittive Some Typical Insulators	THE RESERVE OF THE PERSON NAMED IN
Material	8,
Air	1
Teflon	2
Polyimide	3
Silicon dioxide	3.9
Glass-epoxy (PC board)	4
Alumina	10
Silicon	11.7

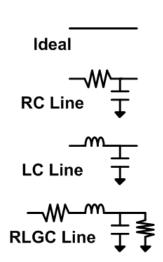
[Dally]

Rectangle over ground

$$C = \frac{w\varepsilon}{s} + \frac{2\pi\varepsilon}{\log(4s/h)}$$

Wire Inductance

 Wire inductance is determined by material permeability, µ, and closed-loop geometry

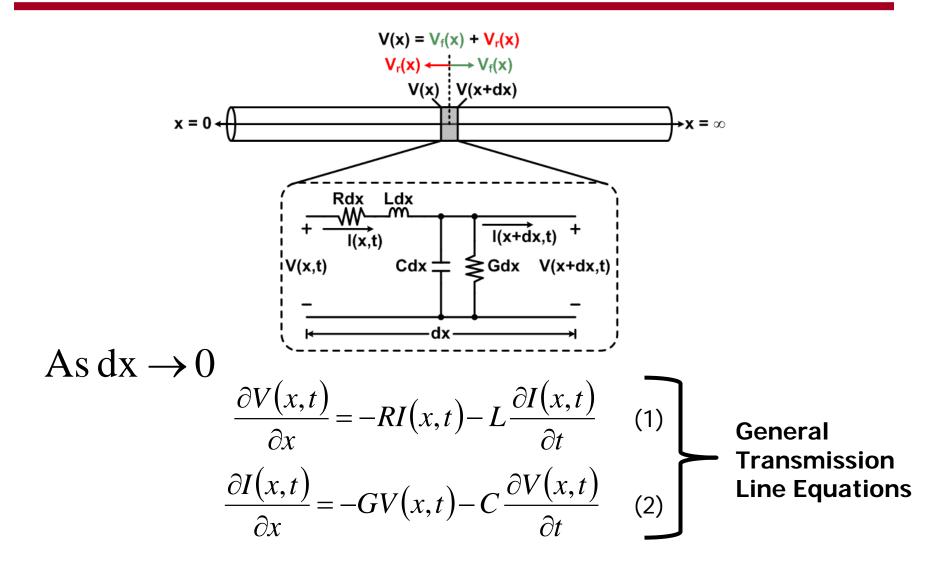

For wire in homogeneous medium

$$CL = \varepsilon \mu$$

• Generally $\mu = \mu_0 = 4\pi \times 10^{-7} \, \text{H/m}$

Wire Models

- Model Types
 - Ideal
 - Lumped C, R, L
 - RC transmission line
 - LC transmission line
 - RLGC transmission line



Condition for LC or RLGC model (vs RC)

$$f_0 \ge \frac{\kappa}{2\pi L}$$

Wire	R	L	С	>f (LC wire)
AWG24 Twisted Pair	0.08Ω/m	400nH/m	40pF/m	32kHz
PCB Trace	5Ω/m	300nH/m	100pF/m	2.7MHz
On-Chip Min. Width M6 (0.18µm CMOS node)	40kΩ/m	4μH/m	300pF/m	1.6GHz

RLGC Transmission Line Model

Time-Harmonic Transmission Line Eqs.

Assuming a traveling sinusoidal wave with angular frequency, ω

$$\frac{dV(x)}{dx} = -(R + j\omega L)I(x)$$
 (3)

$$\frac{dI(x)}{dx} = -(G + j\omega C)V(x)$$
 (4)

Differentiating (3) and plugging in (4) (and vice versa)

$$\frac{d^{2}V(x)}{dx^{2}} = \gamma^{2}V(x)$$
 (5)
$$\frac{d^{2}I(x)}{dx^{2}} = \gamma^{2}I(x)$$
 (6)
Time-Harmonic Transmission Line Equations

where γ is the propagation constant

$$\gamma = \alpha + j\beta = \sqrt{(R + j\omega L)(G + j\omega C)}$$
 (m⁻¹)

Transmission Line Propagation Constant

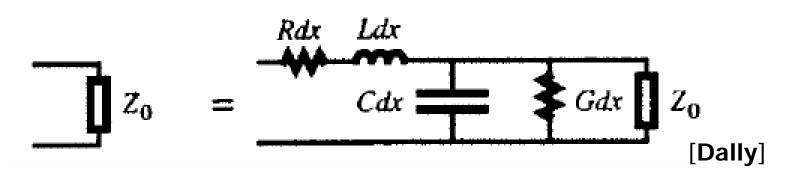
Solutions to the Time-Harmonic Line Equations:

$$V(x) = V_f(x) + V_r(x) = V_{f0}e^{-\gamma x} + V_{r0}e^{\gamma x}$$

$$I(x) = I_f(x) + I_r(x) = I_{f0}e^{-\gamma x} + I_{r0}e^{\gamma x}$$

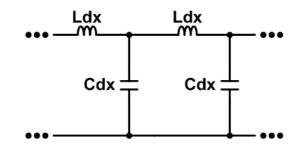
where
$$\gamma = \alpha + j\beta = \sqrt{(R + j\omega L)(G + j\omega C)}$$
 (m⁻¹)

- What does the propagation constant tell us?
 - Real part (α) determines attenuation/distance (Np/m)
 - Imaginary part (β) determines phase shift/distance (rad/m)
 - Signal phase velocity


$$\upsilon = \omega/\beta$$
 (m/s)

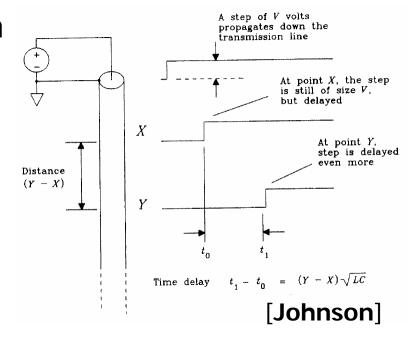
Transmission Line Impedance, Z₀

- For an infinitely long line, the voltage/current ratio is Z₀
- From time-harmonic transmission line eqs. (3) and (4)


$$Z_0 = \frac{V(x)}{I(x)} = \sqrt{\frac{R + j\omega L}{G + j\omega C}} \quad (\Omega)$$

Driving a line terminated by Z₀ is the same as driving an infinitely long line

Lossless LC Transmission Lines


• If Rdx=Gdx=0 $\gamma = \alpha + j\beta = j\omega\sqrt{LC}$ $\alpha = 0 \longrightarrow No Loss!$ $\beta = \omega\sqrt{LC}$

- Waves propagate w/o distortion
 - Velocity and impedance independent of frequency
 - Impedance is purely real

$$\upsilon = \frac{\omega}{\beta} = \frac{1}{\sqrt{LC}}$$

$$Z_0 = \sqrt{\frac{L}{C}}$$

Low-Loss LRC Transmission Lines

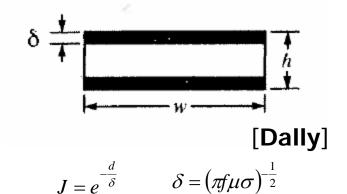
- If R/ ω L and G/ ω C << 1
- Behave similar to ideal LC transmission line, but ...
 - Experience resistive and dielectric loss
 - Frequency dependent propagation velocity results in dispersion
 - Fast step, followed by slow DC tail

$$\gamma = \alpha + j\beta = \sqrt{(R + j\omega L)(G + j\omega C)}$$

$$\cong j\omega\sqrt{LC}\left(1 - j\frac{RC + GL}{\omega LC}\right)^{\frac{1}{2}}$$

$$\cong \frac{R}{2Z_0} + \frac{GZ_0}{2} + j\omega\sqrt{LC}\left[1 + \frac{1}{8}\left(\frac{R}{\omega L}\right)^2 + \frac{1}{8}\left(\frac{G}{\omega C}\right)^2\right]$$

$$= \alpha_R + \alpha_D + j\beta$$


$$lpha_R \cong rac{R}{2Z_0}$$
 Resistive Loss $lpha_D \cong rac{GZ_0}{2}$ Dielectric Loss

$$\beta \cong \omega \sqrt{LC} \left[1 + \frac{1}{8} \left(\frac{R}{\omega L} \right)^2 + \frac{1}{8} \left(\frac{G}{\omega C} \right)^2 \right]$$

$$\upsilon \cong \left(\sqrt{LC}\left[1 + \frac{1}{8}\left(\frac{R}{\omega L}\right)^2 + \frac{1}{8}\left(\frac{G}{\omega C}\right)^2\right]\right)^{-1}$$

Skin Effect (Resistive Loss)

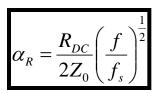
- High-frequency current density falls off exponentially from conductor surface
- Skin depth, δ , is where current falls by e^{-1} relative to full conductor
 - Decreases proportional to sqrt(frequency)
- Relevant at critical frequency f_s
 where skin depth equals half
 conductor height (or radius)
 - Above f_s resistance/loss increases proportional to sqrt(frequency)

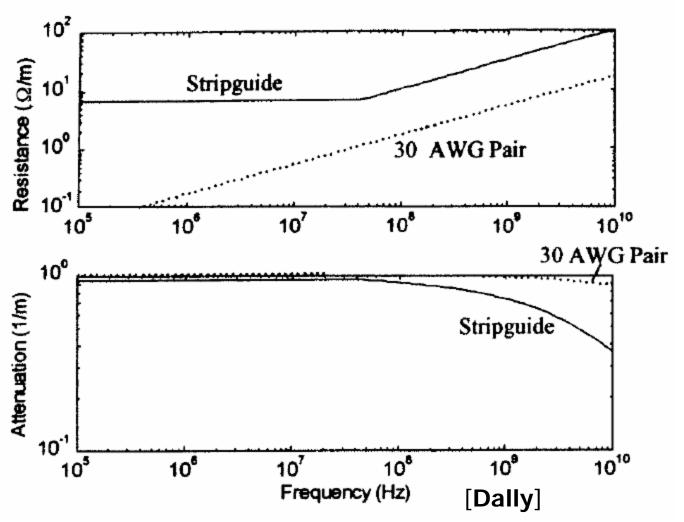
For rectangular conductor:

$$f_{s} = \frac{\rho}{\pi \mu \left(\frac{h}{2}\right)^{2}}$$

$$R(f) = R_{DC} \left(\frac{f}{f_{s}}\right)^{\frac{1}{2}}$$

$$\alpha_{R} = \frac{R_{DC}}{2Z_{0}} \left(\frac{f}{f_{s}}\right)^{\frac{1}{2}}$$


Skin Effect (Resistive Loss)


5-mil Stripguide

 $R_{DC} = 7 \Omega/m, \ f_s = 43MHz$

30 AWG Pair

 $R_{DC} = 0.08 \Omega/m, \ f_s = 67kHz$

Dielectric Absorption (Loss)

- An alternating electric field causes dielectric atoms to rotate and absorb signal energy in the form of heat
- Dielectric loss is expressed in terms of the loss tangent
- Loss increases directly proportional to frequency

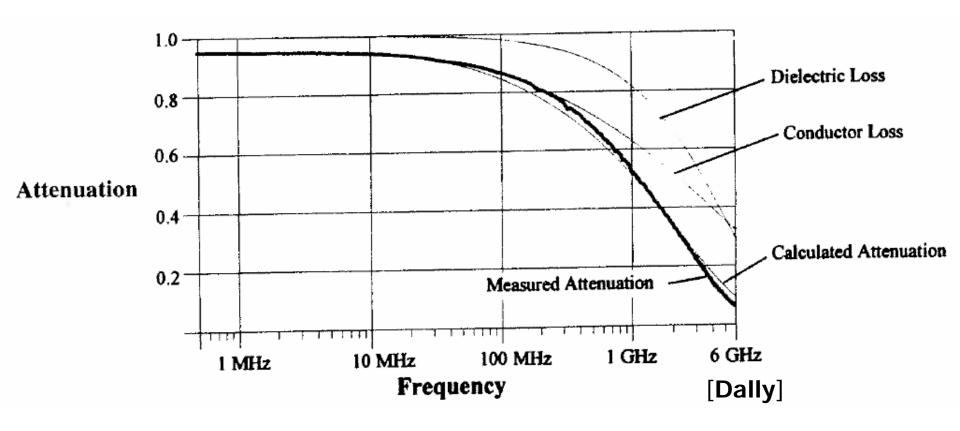
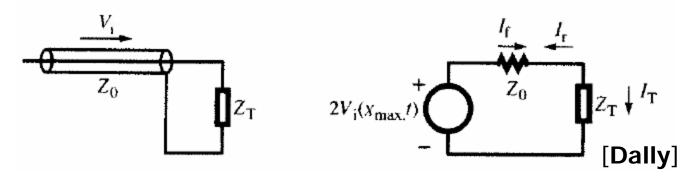

$$\tan \delta_D = \frac{G}{\omega C}$$

TABLE 3-4 Electrical Properties of PC Board Dielectrics			
Material *	$arepsilon_{f r}$	tan δ _D	
Woven glass, epoxy resin ("FR-4")	4.7	0.035	
Woven glass, polyimide resin	4.4	0.025	
Woven glass, polyphenylene oxide resin (GETEK)	3.9	0.010	
Woven glass, PTFE resin (Teflon)	2.55	0.005	
Nonwoven glass, PTFE resin	2.25	0.001	


[Dally]

$$\alpha_D = \frac{GZ_0}{2} = \frac{2\pi f C \tan \delta_D \sqrt{L/C}}{2}$$
$$= \pi f \tan \delta_D \sqrt{LC}$$

Total Wire Loss

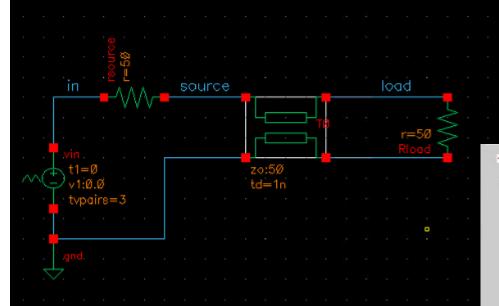
Reflections & Telegrapher's Eq.

With a Thevenin-equivalent model of the line:

Termination Current:
$$I_T = \frac{2V_i}{Z_0 + Z_T}$$

KCL at Termination:

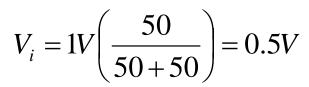
$$I_{r} = I_{f} - I_{T}$$


$$I_{r} = \frac{V_{i}}{Z_{0}} - \frac{2V_{i}}{Z_{T} + Z_{0}}$$

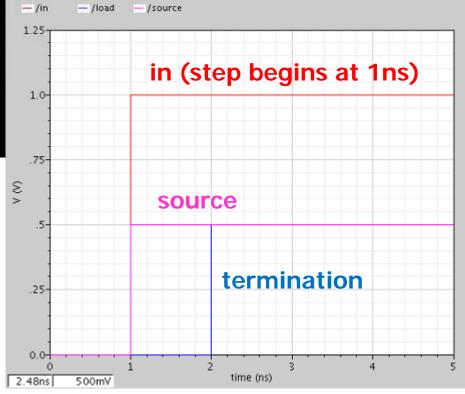
$$I_{r} = \frac{V_{i}}{Z_{0}} \left(\frac{Z_{T} - Z_{0}}{Z_{T} + Z_{0}}\right)$$

Telegrapher's Equation or **Reflection Coefficient**

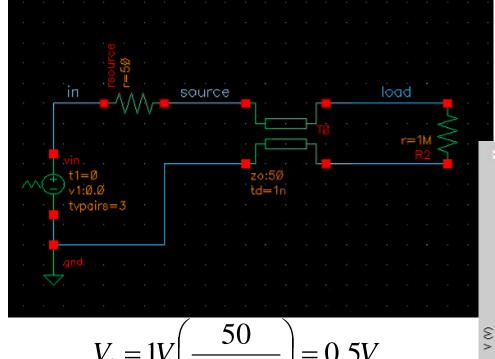
$$k_{r} = \frac{I_{r}}{I_{i}} = \frac{V_{r}}{V_{i}} = \frac{Z_{T} - Z_{0}}{Z_{T} + Z_{0}}$$


Termination Examples - Ideal

$$R_S = 50\Omega$$

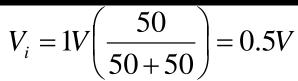

$$Z_0 = 50\Omega, t_d = 1ns$$

$$R_T = 50\Omega$$

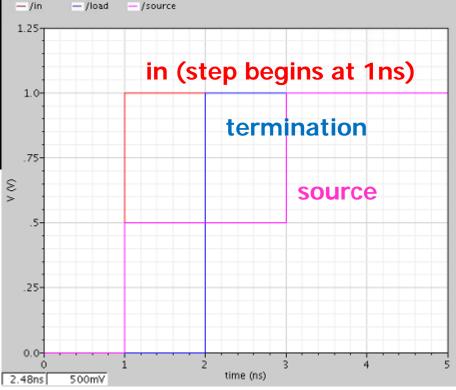


$$k_{rT} = \frac{50 - 50}{50 + 50} = 0$$

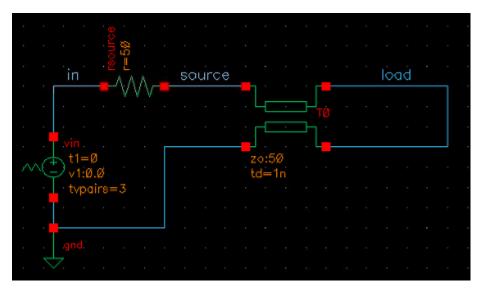
$$k_{rS} = \frac{50 - 50}{50 + 50} = 0$$



Termination Examples - Open


$$R_S = 50\Omega$$
 $Z_0 = 50\Omega$, $t_d = 1$ ns

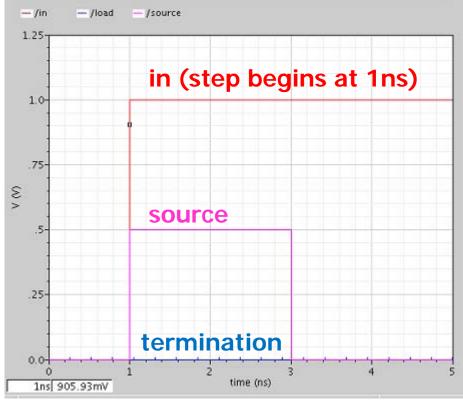
 $R_T \sim \infty (1M\Omega)$



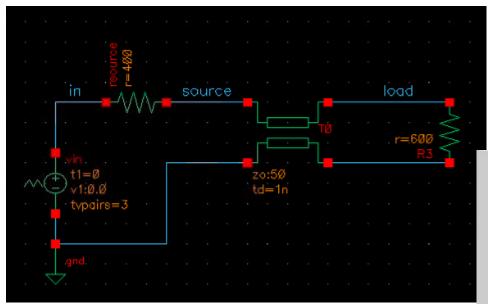
$$k_{rT} = \frac{\infty - 50}{\infty + 50} = +1$$

$$k_{rS} = \frac{50 - 50}{50 + 50} = 0$$

Termination Examples - Short

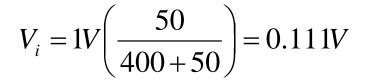


$$V_i = 1V \left(\frac{50}{50 + 50}\right) = 0.5V$$

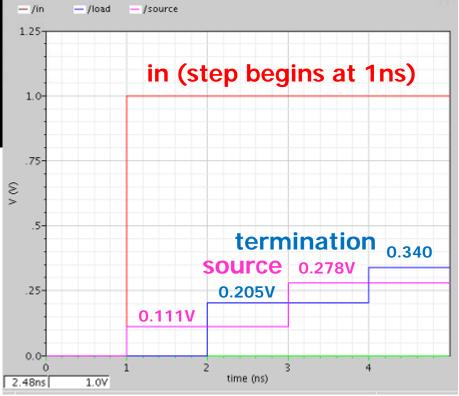

$$k_{rT} = \frac{0 - 50}{0 + 50} = -1$$

$$k_{rS} = \frac{50 - 50}{50 + 50} = 0$$

$$\begin{aligned} R_S &= 50\Omega \\ Z_0 &= 50\Omega, \, t_d \, = 1 ns \\ R_T &= 0\Omega \end{aligned}$$

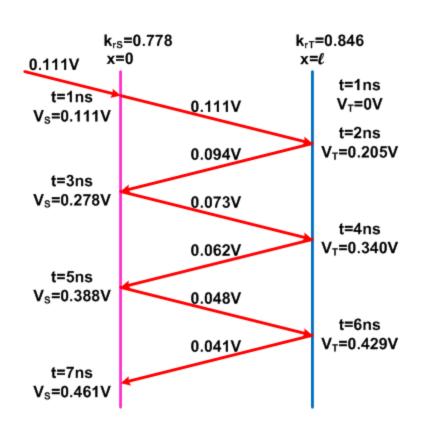


Arbitrary Termination Example

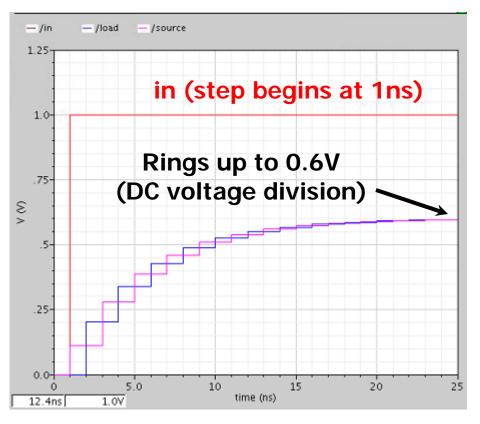

$$R_S = 400\Omega$$

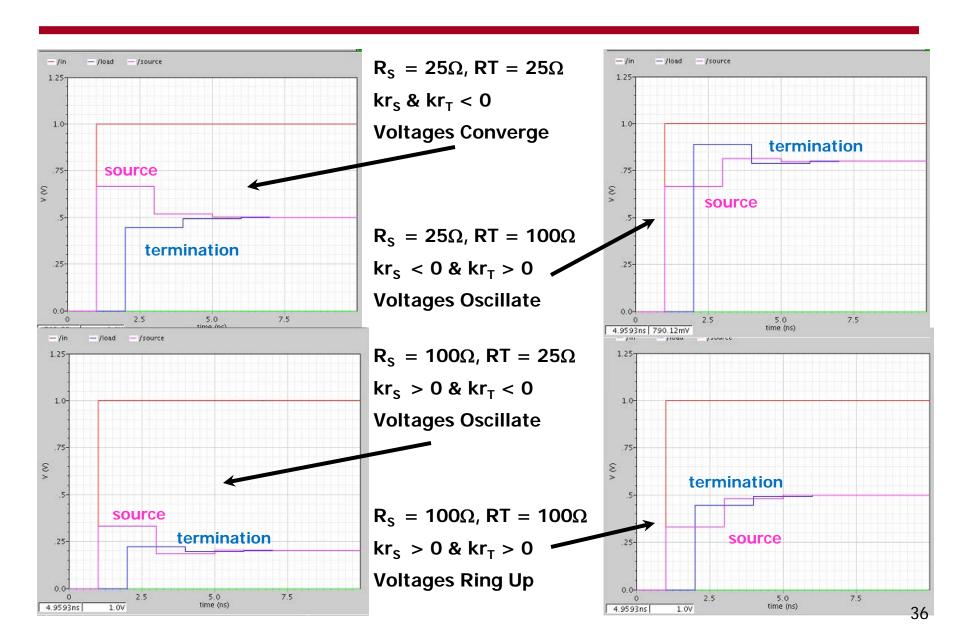
 $Z_0 = 50\Omega$, $t_d = 1$ ns

$$R_T = 600\Omega$$



$$k_{rT} = \frac{600 - 50}{600 + 50} = 0.846$$


$$k_{rS} = \frac{400 - 50}{400 + 50} = 0.778$$


Lattice Diagram

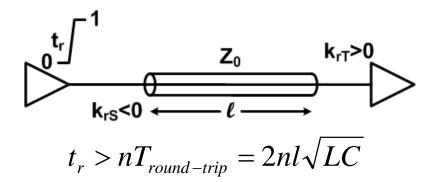
$$R_S = 400\Omega$$

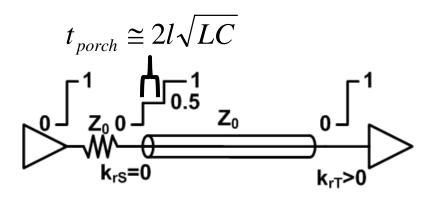
 $Z_0 = 50\Omega$, $t_d = 1$ ns
 $R_T = 600\Omega$

Termination Reflection Patterns

Termination Schemes

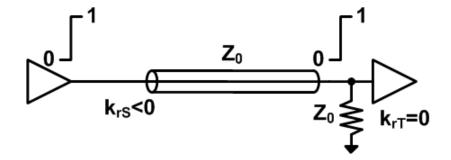
No Termination

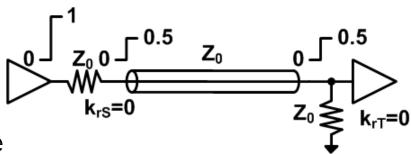

- Little to absorb line energy
- Can generate oscillating waveform
- Line must be very short relative to signal transition time


•
$$n = 4 - 6$$

Limited off-chip use

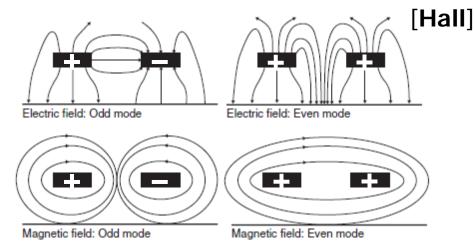
Source Termination


- Source output takes 2 steps up
- Used in moderate speed pointto-point connections



Termination Schemes

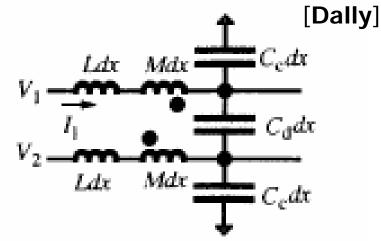
- Receiver Termination
 - No reflection from receiver
 - Watch out for intermediate impedance discontinuities
 - Little to absorb reflections at driver



- Double Termination
 - Best configuration for min reflections
 - Reflections absorbed at both driver and receiver
 - Get half the swing relative to single termination
 - Most common termination scheme for high performance serial links

Differential Transmission Lines

- Differential signaling advantages
 - Self-referenced
 - Common-mode noise rejection
 - Increased signal swing
 - Reduced self-induced powersupply noise
- Requires 2x the number of signaling pins relative to singleended signaling
 - But, smaller ratio of supply/signal (return) pins
 - Total pin overhead is typically 1.3-1.8x (vs 2x)

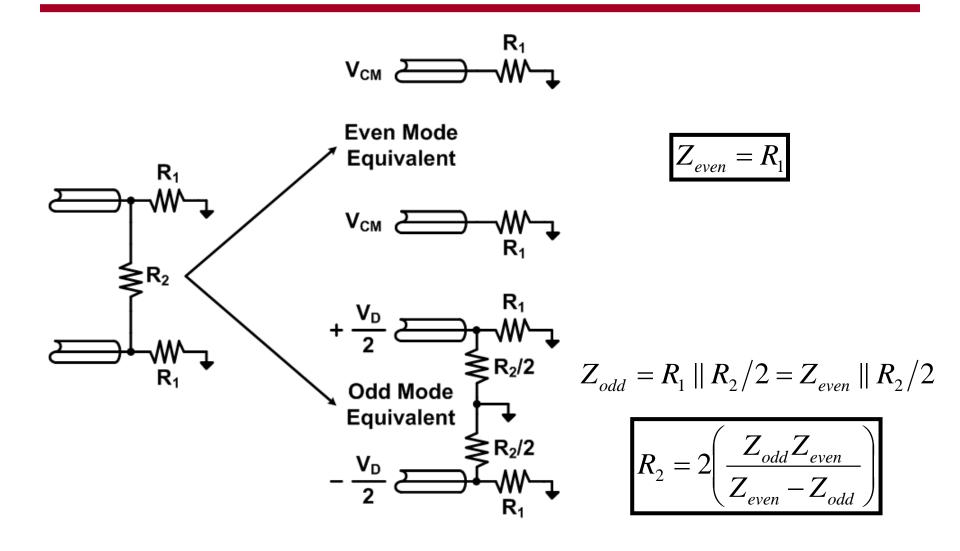


- Even mode
 - When equal voltages drive both lines, only one mode propagates called even more
- Odd mode
 - When equal in magnitude, but out of phase, voltages drive both lines, only one mode propagates called odd mode

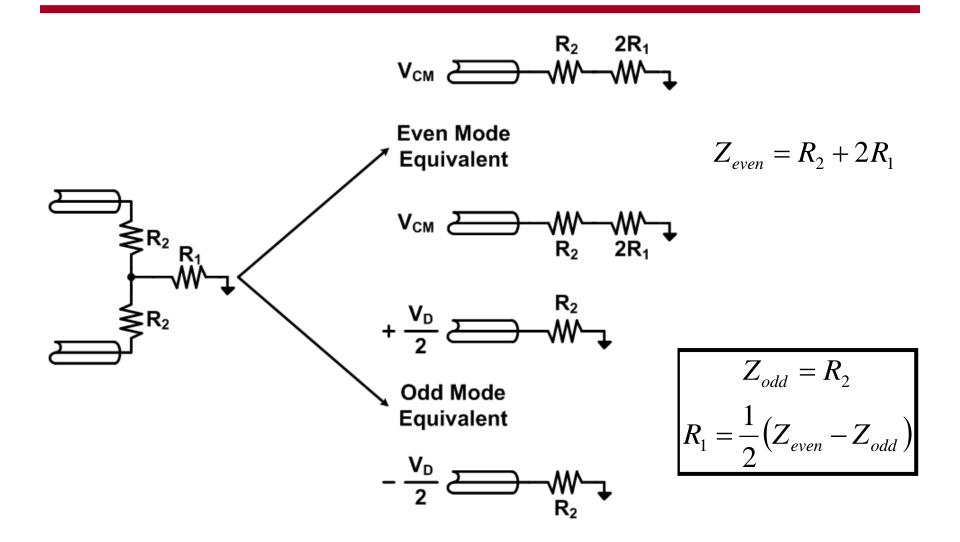
Balanced Transmission Lines

- Even (common) mode excitation
 - Effective $C = C_C$
 - Effective L = L + M
- Odd (differential) mode excitation
 - Effective $C = C_C + 2C_d$
 - Effective L = L M

$$Z_{DIFF} = 2Z_{odd}, \quad Z_{CM} = \frac{Z_{even}}{2}$$



(a) Model of a Balanced Line


$$Z_{even} = \left(\frac{L+M}{C_c}\right)^{\frac{1}{2}}$$

$$Z_{odd} = \left(\frac{L-M}{C_c + 2C_d}\right)^{\frac{1}{2}}$$

PI-Termination

T-Termination

Next Time

- Channel modeling
 - Time domain reflectometer (TDR)
 - Network analysis