ECEN689: Special Topics in High-Speed Links Circuits and Systems Spring 2010

Lecture 28: VCOs

Sam Palermo Analog & Mixed-Signal Center Texas A&M University

Announcements

 Project Preliminary Report #2 now due Monday April 26 in class

• Exam 2 is April 30

- Project feedback meetings
 - Today 3:30-5
 - Wednesday 10:30-12

VCOs

Charge-Pump PLL Circuits

- Phase Detector
- Charge-Pump
- Loop Filter
- VCO
- Divider

Voltage-Controlled Oscillator

$$\omega_{out}(t) = \omega_0 + \Delta \omega_{out}(t) = \omega_0 + K_{VCO} v_c(t)$$

• Time-domain phase relationship

$$\theta_{out}(t) = \int \Delta \omega_{out}(t) dt = K_{VCO} \int v_c(t) dt$$
Laplace Domain Model
$$V_c(t) \longrightarrow \begin{matrix} K_{VCO} \\ S \end{matrix} \longrightarrow \theta_{out}(t) \end{matrix}$$

Voltage-Controlled Oscillators (VCO)

- Ring Oscillator
 - Easy to integrate
 - Wide tuning range (5x)
 - Higher phase noise

- LC Oscillator
 - Large area
 - Narrow tuning range (20-30%)
 - Lower phase noise

Barkhausen's Oscillation Criteria

Closed-loop transfer function:

$$\frac{H(j\omega)}{1-H(j\omega)}$$

- Sustained oscillation occurs if $H(j\omega)=1$
- 2 conditions:
 - Gain = 1 at oscillation frequency ω_0
 - Total phase shift around loop is n360° at oscillation frequency ω_0

Ring Oscillator Example

Three-stage ring oscillator

$$H(s) = -\frac{A_0^3}{\left(1 + \frac{s}{\omega_0}\right)^3}$$

 $\omega_{osc} = \sqrt{3}\omega_0$

$$\tan^{-1}\frac{\omega_{osc}}{\omega_o} = 60^\circ$$

 $\frac{V_{out}(s)}{V_{in}(s)} = \frac{\frac{-A_0^3}{(1+s/\omega_0)^3}}{1+\frac{A_0^3}{(1+s/\omega_0)^3}} = \frac{-A_0^3}{(1+s/\omega_0)^3+A_0^3}$

 $A_0 = 2$

Ring Oscillator Example

$$H(s) = -\frac{A_0^3}{\left(1 + \frac{s}{\omega_0}\right)^3} \qquad \qquad \omega_{osc} = \sqrt{3}\omega_0$$

$$\tan^{-1}\frac{\omega_{osc}}{\omega_{o}} = 60^{\circ}$$

 $\omega_{\rm osc}$

 $A_0 = 2$

$$\frac{V_{out}(s)}{V_{in}(s)} = \frac{\frac{-A_0^3}{(1+s/\omega_0)^3}}{1+\frac{A_0^3}{(1+s/\omega_0)^3}} = \frac{-A_0^3}{(1+s/\omega_0)^3+A_0^3}$$

- 4-stage oscillator
 - A0 = sqrt(2)
 - Phase shift = 45
- Easier to make a larger-stage oscillator oscillate, as it requires less gain and phase shift per stage

LC Oscillator Example

LC Oscillator Example

Supply-Tuned Ring Oscillator

Current-Starved Ring Oscillator

Current - starved VCO.

Capacitive-Tuned Ring Oscillator

Symmetric Load Ring Oscillator

- Symmetric load provides frequency tuning at excellent supply noise rejection
- See Maneatis papers for self-biased techniques to obtain constant damping factor and loop bandwidth (% of ref clk),

LC Oscillator

- A variable capacitor (varactor) is often used to adjust oscillation frequency
- Total capacitance includes both tuning capacitance and fixed capacitances which reduce the tuning range

$$\omega_{osc} = \frac{1}{\sqrt{L_P C_P}} = \frac{1}{\sqrt{L_P (C_{tune} + C_{fixed})}}$$

Varactors

- pn junction varactor
 - Avoid forward bias region to prevent oscillator nonlinearity

- MOS varactor
 - Accumulation-mode devices have better Q

Oscillator Noise

Oscillator Phase Noise Model

• For improved model see Hajimiri papers

Open-Loop VCO Jitter

- Measure distribution of clock threshold crossings
- Plot σ as a function of delay ΔT

Open-Loop VCO Jitter

- Jitter σ is proportional to sqrt(Δ T)
- K is VCO time domain figure of merit

VCO in Closed-Loop PLL Jitter

• PLL limits σ for delays longer than loop bandwidth τ_{L}

$$\tau_L = 1/2\pi f_L$$

Converting Phase Noise to Jitter

RMS Phase Jitter

$$J_{phase} = \frac{1}{2\pi f_{vco}} \sqrt{\int S_{\phi}(f) df}$$

- Integration range depends on application
 - f_{min} set by standard
 - Ex. Assumed CDR tracking bandwidth
 - Usually stop integration at f_o/2 to avoid capturing carrier and harmonics

Next Time

- PLL wrap-up
- CDRs