ECEN689: Special Topics in High-Speed Links Circuits and Systems Spring 2010

Lecture 25: Clocking Architectures

Sam Palermo Analog & Mixed-Signal Center Texas A&M University

Announcements

- Project Preliminary Report #1 due April 16 (in class)
- Exam 2 is April 30
- Reading
 - Will post some clocking papers

Agenda

Project Overview

HW5 Discussion

Clocking Architectures

HW5 Comparator Survey

HW5 Comparator Delay vs VDD

HW5 Comparator ISF

CML: 60ps

High-Speed Electrical Link System

Clocking Terminology

Synchronous

- Every chip gets same frequency AND phase
- Used in low-speed busses

Mesochronous

- Same frequency, but unknown phase
- Requires phase recovery circuitry
 - Can do with or without full CDR
- Used in fast memories, internal system interfaces, MAC/Packet interfaces

Plesiochronous

- Almost the same frequency, resulting in slowly drifting phase
- Requires CDR
- Widely used in high-speed links

Asynchronous

- No clocks at all
- Request/acknowledge handshake procedure
- Used in embeddded systems, Unix, Linux

I/O Clocking Architectures

- Three basic I/O architectures
 - Common Clock (Synchronous)
 - Forward Clock (Source Synchronous)
 - Embedded Clock (Clock Recovery)
- These I/O architectures are used for varying applications that require different levels of I/O bandwidth
- A processor may have one or all of these I/O types
- Often the same circuitry can be used to emulate different I/O schemes for design reuse

Common Clock I/O Architecture

- Common in original computer systems
- Synchronous system
- Common bus clock controls chip-to-chip transfers
- Requires equal length routes to chips to minimize clock skew
- Data rates typically limited to ~100Mb/s

Common Clock I/O Cycle Time

Cycle time to meet setup time

 $max(T_{clk-A}+T_{Aclk}+T_{drive}+T_{tof}+T_{receive}+T_{setup}) - min(T_{Bclk}-T_{clk-B}) < T_{cycle}$ Chip A T_{tof} ^I receive Tdrive setup Bclk PLL Aclk PLL Chip B T_{clk - A} T_{clk} - B clock [Krauter] source

Common Clock I/O Limitations

- Difficult to control clock skew and propagation delay
- Need to have tight control of absolute delay to meet a given cycle time
- Sensitive to delay variations in on-chip circuits and board routes
- Hard to compensate for delay variations due to low correlation between on-chip and off-chip delays
- While commonly used in on-chip communication, offers limited speed in I/O applications

Forward Clock I/O Architecture

- Common high-speed reference clock is forwarded from TX chip to RX chip
 - Mesochronous system
- Used in processor-memory interfaces and multi-processor communication
 - Intel QPI
 - Hypertransport
 - Requires one extra clock channel
 - "Coherent" clocking allows lowto-high frequency jitter tracking
 - Need good clock receive amplifier as the forwarded clock is attenuated by the channel

Forward Clock I/O Limitations

- Clock skew can limited forward clock I/O performance
 - Driver strength and loading mismatches
 - Interconnect length
 mismatches
- Low pass channel causes jitter amplification
- Duty-Cycle variations of forwarded clock

Forward Clock I/O De-Skew

- Per-channel de-skew allows for significant data rate increases
 - Sample clock adjusted to center clock on the incoming data eye
 - Implementations
 - Delay-Locked Loop and Phase Interpolators
 - Injection-Locked Oscillators
 - Phase Acquisition can be
 - BER based no additional input phase samplers
 - Phase detector based implemented with additional input phase samplers periodically powered on

Forward Clock I/O Circuits

Multi-Channel Serial Link System

- TX PLL
- TX Clock Distribution
- **Replica TX Clock Driver**
- Channel
- Forward Clock Amplifier
- **RX Clock Distribution** •
- **De-Skew Circuit**
 - DLL/PI
 - **Injection-Locked Oscillator**

Embedded Clock I/O Architecture

- Can be used in mesochronous or plesiochronous systems
- Clock frequency and optimum phase position are extracted from incoming data stream
- Phase detection continuously running
- CDR Implementations
 - Per-channel PLL-based
 - Dual-loop w/ Global PLL &
 - Local DLL/PI
 - Local Phase-Rotator PLLs

Embedded Clock I/O Limitations

- Jitter tracking limited by CDR bandwidth
 - Technology scaling allows CDRs with higher bandwidths which can achieve higher frequency jitter tracking
- Generally more hardware than forward clock implementations
 - Extra input phase samplers

Embedded Clock I/O Circuits

• TX PLL

- TX Clock Distribution
- CDR
 - Per-channel PLL-based
 - Dual-loop w/ Global PLL &
 - Local DLL/PI
 - Local Phase-Rotator PLLs
 - Global PLL requires RX clock distribution to individual channels

Next Time

• PLL