ECEN689: Special Topics in High-Speed Links Circuits and Systems Spring 2010

Lecture 23: Jitter

Sam Palermo Analog & Mixed-Signal Center Texas A&M University

Announcements

- HW6 due Wednesday April 7 (in class)
- Exam 2 will be either April 28 or 30
- Reading
 - Will post some jitter application notes
 - Majority of today's material from Hall reference

• Noise Budget Example

Jitter

Noise Source Classifications

- Determining whether noise source is
 - Proportional vs Independent
 - Bounded vs Statistical
- is important in noise budgeting

Proportional Independent

		-		
þ	Residual ISI	RX Offset		
bd		RX Sensitivity		
Bounded	Crosstalk	Power Supply Noise		
Statistical	Large-Channel Crosstalk	Random Noise		

Noise Budget Example

- Peak TX differential swing of 400mV_{ppd} equalized down 10dB
 - $\pm 200 \text{mV} \rightarrow \pm 63 \text{mV}$

Parameter	K _n	RMS	Value (BER=10 ⁻¹²)
Peak Differential Swing			0.4V
RX Offset + Sensitivity			5mV
Power Supply Noise			5mV
Residual ISI	0.05		20mV
Crosstalk	0.05		20mV
Random Noise		1mV	14mV
Attenuation	10dB = 0.684		0.274V
Total Noise			0.338V
Differential Eye Height Margin			62mV

- Conservative analysis
 - Assumes all distributions combine at worst-case
- Better technique is to use statistical BER link simulators

Eye Diagram and Spec Mask

- Links must have margin in both the voltage AND timing domain for proper operation
- For independent design (interoperability) of TX and RX, a spec eye mask is used

Jitter Definitions

- Jitter can be defined as "the short-term variation of a signal with respect to its ideal position in time"
- Jitter measurements
 - Period Jitter (J_{PER})
 - Time difference between measured period and ideal period
 - Cycle to Cycle Jitter (J_{CC})
 - Time difference between two adjacent clock periods
 - Important for budgeting on-chip digital circuits cycle time
 - Accumulated Jitter (J_{AC})
 - Time difference between measured clock and ideal trigger clock
 - Jitter measurement most relative to high-speed link systems

Jitter Statistical Parameters

- Mean Value
 - Can be interpreted as a fixed timing offset or "skew"
 - Generally not important, as usually can corrected for
- RMS Jitter
 - Useful for characterizing random component of jitter
- Peak-to-Peak Jitter
 - Function of both deterministic (bounded) and random (unbounded) jitter components
 - Must be quoted at a giver BER to account for random (unbounded) jitter

Jitter Calculation Examples

n	1	2	3	4	Mean	RMS	PP
J _{PER}	-0.06	0.02	-0.06	0.12	0.005	0.085	0.18
J _{CC}	0.08	-0.08	0.18	-	0.06	0.131	0.26
J _{AC}	-0.07	-0.05	-0.11	0.01	-0.055	0.05	0.12

Jitter Histogram

- Used to extract the jitter PDF
- Consists of both deterministic and random components
 - Need to decompose these components to accurately estimate jitter at a given BER

Jitter Categories

Random Jitter (RJ)

- Unbounded and modeled with a gaussian distribution
 - Assumed to have zero mean value
 - Characterized by the rms value, σ_{RJ}
 - Peak-to-peak value must be quoted at a given BER
- Originates from device noise
 - Thermal, shot, flicker noise

Deterministic Jitter (DJ)

- Bounded with a peak-to-peak value that can be predicted
- Caused by transmission-line losses, duty-cycle distortion, spreadspectrum clocking, crosstalk
- Categories
 - Sinusoidal Jitter (SJ or PJ)
 - Data Dependent Jitter (DDJ)
 - Intersymbol Interference (ISI)
 - Duty Cycle Distortion (DCD)
 - Bounded Uncoirrelated Jitter (BUJ)

Sinusoidal or Periodic Jitter (SJ or PJ)

- Repeats at a fixed frequency due to modulating effects
 - Spread spectrum clocking
 - PLL reference clock feedthrough
- Can be decomposed into a Fourier series of sinusoids $SJ(t) = \sum A_i \cos(\omega_i t + \theta_i)$
- The jitter produced by an individual sinusoid is

Data Dependent Jitter (DDJ)

- Data dependent jitter is correlated with either the transmitted data pattern or aggressor (crosstalk) data patterns
- Caused by phenomena such as phase errors in serialization clocks, channel filtering, and crosstalk
- Categories
 - Duty Cycle Distortion (DCD)
 - Intersymbol Interference (ISI)
 - Bounded Uncorrelated Jitter (BUJ)

Duty Cycle Distortion (DCD)

- Caused by duty cycle errors in TX serialization clocks and rise/fall delay mismatches in postserialization buffers
- Resultant PDF from a peak-to-peak duty cycle distortion (α_{DCD}) is the sum of two delta functions

$$PDF_{DCD}(t) = \frac{1}{2} \left[\delta \left(t - \frac{\alpha_{DCD}}{2} \right) + \delta \left(t + \frac{\alpha_{DCD}}{2} \right) \right]$$

Intersymbol Interference (ISI)

- Caused by channel loss, dispersion, and reflections
- Equalization can improve ISI jitter

Bounded Uncorrelated Jitter (BUJ)

- Not aligned in time with the data stream
- Most common source is crosstalk
- Classified as uncorrelated due to being correlated to the aggressor signals and not the victim signal or data stream
- While uncorrelated, still a bounded source with a quantifiable peak-to-peak value

Total Jitter (TJ)

 The total jitter PDF is produced by convolving the random and deterministic jitter PDFs

 $PDF_{JT}(t) = PDF_{RJ}(t) * PDF_{DJ}(t)$ where $PDF_{DJ}(t) = PDF_{SJ}(t) * PDF_{DCD}(t) * PDF_{ISI}(t) * PDF_{BUJ}(t)$

Jitter and Bit Error Rate

- Jitter consists of both deterministic and random components
- Total jitter must be quoted at a given BER
 - At BER=10⁻¹², jitter ~1675ps and eye width margin ~200ps
 - System can potentially achieve BER=10⁻¹⁸ before being jitter limited

Dual Dirac Jitter Model

 For system-level jitter budgets, the dual Dirac model allows for the budgeting of deterministic and random jitter components

Time (ps)

Dual Dirac Jitter Model

 Jitter at a given BER is computed considering both leading and trailing edges

Dual Dirac Jitter Model Example

Plot measured jitter
PDF vs Q-scale

$$Q_{BER}(BER) = \sqrt{2}erf^{-1}\left(1 - \frac{BER}{\rho_T}\right)$$

where $\rho_{\rm T}$ is the transition density, typically 0.5

- Tails are used to extract σ_{RJ}
- Extrapolate to Q(0) to extract DJ bounds

Dual Dirac Jitter Model Example

 Extracted dual Dirac model matches well with measured jitter PDF

Next Time

- Statistical BER Analysis Tool Overview
- Timing Circuits