ECEN689: Special Topics in High-Speed Links Circuits and Systems
Spring 2012

Lecture 1: Introduction

Sam Palermo
Analog & Mixed-Signal Center
Texas A&M University
Class Topics

- System and design issues relevant to high-speed electrical (and optical) signaling
- Channel properties
 - Modeling, measurements, communication techniques
- High-Speed link circuits
 - Drivers, receivers, equalizers, timing systems
- Link system design
 - Modeling and performance metrics
- Link system examples
Administrative

• Instructor:
 • Sam Palermo
 • 315E WERC Bldg., 845-4114, spalermo@ece.tamu.edu
 • Office hours: TR 9:00am-10:30pm

• Lectures: MW 5:45pm-7:00am, ZACH 223A

• Lab: R 4:00pm-5:50pm, ZACH 203
 • Lab begins second week

• Class web page
 • http://www.ece.tamu.edu/~spalermo/ecen689.html
Class Material

- Textbook: Class Notes and Technical Papers
- Key References
- Class notes
 - Will hand out hard copies in class
Grading

- **Exams (50%)**
 - Two midterm exams (25% each)

- **Homework & Labs (25%)**
 - Labs (Prelab + Report) and homeworks weighted equally
 - Collaboration is allowed, but independent simulations and write-ups
 - Need to setup CADENCE simulation environment
 - Due at beginning of class
 - No late homework will be graded

- **Final Project (25%)**
 - Groups of 1-2 students
 - Report and PowerPoint presentation required
Prerequisites

• This is a circuits AND systems class

• Circuits
 • ECEN474 or approval of instructor
 • Basic knowledge of CMOS gates, flops, etc…
 • Circuit simulation experience (HSPICE, Spectre)

• Systems
 • Basic knowledge of s- and z-transforms
 • Basic digital communication knowledge
 • MATLAB experience
Simulation Tools

- Matlab
- Stateye (Statistical BER link analysis)
- Cadence
- 90nm CMOS device models
 - Can use other technology models if they are a 90nm or more advanced CMOS node
- Other tools, schematic, layout, etc… are optional
Desktop Computer I/O Architecture

- Many high-speed I/O interfaces
- Key bandwidth bottleneck points are memory (FSB) and graphics interfaces (PCIe)
- Near-term architectures
 - Integrated memory controller with serial I/O (>5Gb/s) to memory
 - Increasing PCIe from 2.5Gb/s (Gen1) to 8Gb/s (Gen3)
- Other serial I/O systems
 - Multi-processor systems
 - Routers
Serial Link Applications

- Processor-to-memory
 - RDRAM (1.6Gbps), XDR DRAM (7.2Gbps), XDR2 DRAM (12.8Gbps)

- Processor-to-peripheral
 - PCIe (2.5, 5, 8Gbps), Infiniband (10Gbps), USB3 (4.8Gbps)

- Processor-to-processor
 - Intel QPI (6.4Gbps), AMD Hypertransport (6.4Gbps)

- Storage
 - SATA (6Gbps), Fibre Channel (20Gbps)

- Networks
 - LAN: Ethernet (1, 10Gbps)
 - WAN: SONET (2.5, 10, 40Gbps)
 - Backplane Routers: (2.5 – 12.5Gbps)
Chip-to-Chip Signaling Trends

<table>
<thead>
<tr>
<th>Decade</th>
<th>Speeds</th>
<th>Transceiver Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980’s</td>
<td>>10Mb/s</td>
<td>Inverter out, inverter in</td>
</tr>
<tr>
<td>1990’s</td>
<td>>100Mb/s</td>
<td>Termination, Source-synchronous clk.</td>
</tr>
<tr>
<td>2000’s</td>
<td>>1 Gb/s</td>
<td>Pt-to-pt serial streams, Pre-emphasis equalization</td>
</tr>
<tr>
<td>Future</td>
<td>>10 Gb/s</td>
<td>Adaptive Equalization, Advanced low power clk., Alternate channel materials</td>
</tr>
</tbody>
</table>

Slide Courtesy of Frank O’Mahony & Brian Casper, Intel
Increasing I/O Bandwidth Demand

- Single ⇒ Multi ⇒ Many-Core \(\mu \)Processors
- Tera-scale many-core processors will aggressively drive aggregate I/O rates

Intel Teraflop Research Chip
- 80 processor cores
- On-die mesh interconnect network w/ >2Tb/s aggregate bandwidth
- 100 million transistors
- 275mm\(^2\)

ITRS Projections*

*2006 International Technology Roadmap for Semiconductors
• Frequency dependent loss
 – Dispersion & reflections

• Co-channel interference
 – Far-end (FEXT) & near-end (NEXT) crosstalk
Channel Performance Impact

Channel Responses
- 7th Desktop/0Conn
- 17th Refined BP/2Conn
- 17th Legacy BP/2Conn

10Gb/s Pulse Responses
- 7th Desktop/0Conn
- 17th Refined BP/2Conn
- 17th Legacy BP/2Conn

10Gb/s Eye - Desktop Channel
- Voltage (V) vs. Time (ps)

10Gb/s Eye - Refined BP Channel
- Voltage (V) vs. Time (ps)

10Gb/s Eye - Legacy BP Channel
- Voltage (V) vs. Time (ps)
Backplane Link Example

A 10Gb/s 5-tap DFE / 4-Tap FFE Transceiver in 90nm CMOS Technology

Mounir Meghelli, Sergey Rylov, John Bulzacchelli, Woogeun Rhee, Alexander Rylyakov, Herschel Ainspan, Ben Parker, Michael Beakes, Aichin Chung, Troy Beukema, Petar Pepeljugoski, Lei Shan, Young Kwark, Sudhir Gowda and Dan Friedman

IBM T. J. Watson Research Center, Yorktown Heights, NY
Transmission Channel Impairments

INPUT

- Packaged SerDes
- Backplane trace
- Line card trace
- Edge connector
- Via stub

OUTPUT

[Image of channel response and diagrams]

- S21
 - -24.6dB @ 5GHz

The Channel

- Pkg
- Line card trace
- Edge connector
- Backplane 16” trace
- Edge connector
- Line card trace
- Pkg
- Rx IC

Measurements

- DATA = RAND Tx 600mVpd AGC Gain -5.48dB
- XTalk = NONE AGC 5.0GHz 0.00dB
- PKG=0/0 TERM = 5050/5050 IC = 3/3
- HSSCDR = 2.3.2-pre2 IBM Confidential
- Date = Sat 01/21/2006 12:00 PM
- PLL=0F1V0S0,C16,N32,O1,L80 FREQ=0.00ppm/0.00us
- FFE = [1.000, 0.000]

[Meghelli (IBM) ISSCC 2006]
10Gb/s SerDes Main Features

- Tx with 1 baud-spaced 4-tap FFE
- Rx with 5-tap adaptive DFE and digital clock recovery
- LC-VCO based PLL for low noise clock generation
- 90nm CMOS technology
Transmitter Architecture

Key Features:
- Half-rate CML design
- 4-tap FFE
- Tap polarity control
- ESD protection
- 70mW (24mA main tap, no FFE)

<table>
<thead>
<tr>
<th>FFE Taps</th>
<th>Full Scale</th>
<th>DAC bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-cursor</td>
<td>25%</td>
<td>4</td>
</tr>
<tr>
<td>Cursor</td>
<td>100%</td>
<td>6</td>
</tr>
<tr>
<td>1st Post-cursor</td>
<td>50%</td>
<td>5</td>
</tr>
<tr>
<td>2nd Post-cursor</td>
<td>25%</td>
<td>4</td>
</tr>
</tbody>
</table>

"A Low Power 10Gb/s Serial Link Transmitter in 90-nm CMOS"
A. Rylyakov et al., CSICS 2005

[Meghelli (IBM) ISSCC 2006]
Tx Output Eye Diagram @ 10Gb/s

No FFE, 24mA on main tap

FFE 4=[0, 85%, -15%, 0, 0]

[Meghelli (IBM) ISSCC 2006]
Receiver Architecture

Key Features:
- Half-rate design
- 5-tap continuously adaptive DFE
- Variable gain amplifier
- Digital CDR
- ESD protection (HBM & CDM)
- 130mW (with DFE and CDR logic)

[Meghelli (IBM) ISSCC 2006]
DFE Approach

Key Features:
- Half-rate DFE with H1 speculation and dynamic H2-H5 feedback allows 2UI for settling
- DFE algorithm maximizes vertical eye opening at the data slicing instant
- Offset adjustment at all the slicer inputs

[Received eye]

\[\Sigma \]

\[\Sigma \]

\[\Sigma \]

Tap-feedback and weighting

Taps-feedback

Deven

Tap weights

Dodd

On-chip DFE Logic

<table>
<thead>
<tr>
<th>DFE Taps</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>6 bits</td>
</tr>
<tr>
<td>H2</td>
<td>5 bits</td>
</tr>
<tr>
<td>H3, H4, H5</td>
<td>4 bits</td>
</tr>
</tbody>
</table>

Meghelli (IBM) ISSCC 2006
Key Features:
- Fully digital loop
- Can handle up to +/- 4000ppm frequency offset
- Independent I,Q control

[Meghelli (IBM) ISSCC 2006]
Chip-to-Chip Link Experiments

<table>
<thead>
<tr>
<th>Trace Length</th>
<th>5GHz losses (Tx module + board trace + Rx module)</th>
<th>Number of vias</th>
</tr>
</thead>
<tbody>
<tr>
<td>10” (#1)</td>
<td>12dB</td>
<td>2 / 0 / 0</td>
</tr>
<tr>
<td>10” (#2)</td>
<td>10dB</td>
<td>0 / 2 / 0</td>
</tr>
<tr>
<td>15”</td>
<td>25dB</td>
<td>4 / 2 / 0</td>
</tr>
<tr>
<td>20”</td>
<td>15dB</td>
<td>0 / 0 / 2</td>
</tr>
</tbody>
</table>

3.8mm via stub / 1.8mm via stub / 1.8mm via through

[Meghelli (IBM) ISSCC 2006]
Chip-to-Chip Measurement Results

Horizontal eye opening of the equalized eye at the receiver slicer input

<table>
<thead>
<tr>
<th>Trace Length</th>
<th>5GHz losses (Tx module + board trace + Rx module)</th>
<th>Number of vias</th>
</tr>
</thead>
<tbody>
<tr>
<td>10” (#1)</td>
<td>12dB</td>
<td>2 / 0 / 0</td>
</tr>
<tr>
<td>10” (#2)</td>
<td>10dB</td>
<td>0 / 2 / 0</td>
</tr>
<tr>
<td>15”</td>
<td>25dB</td>
<td>4 / 2 / 0</td>
</tr>
<tr>
<td>20”</td>
<td>15dB</td>
<td>0 / 0 / 2</td>
</tr>
</tbody>
</table>

[Meghelli (IBM) ISSCC 2006] Link
Preliminary Schedule

<table>
<thead>
<tr>
<th>Topic</th>
<th>Week</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Channels</td>
<td></td>
</tr>
<tr>
<td>II. Communication Techniques</td>
<td>Week 1-7</td>
</tr>
<tr>
<td>III. Equalizers</td>
<td></td>
</tr>
<tr>
<td>IV. Transmitter/Receiver Circuits</td>
<td></td>
</tr>
<tr>
<td>First Exam</td>
<td>March 7</td>
</tr>
<tr>
<td>V. Equalizer Circuits</td>
<td></td>
</tr>
<tr>
<td>VI. Clocking Circuits</td>
<td>Week 8-14</td>
</tr>
<tr>
<td>VII. Clocking Systems</td>
<td></td>
</tr>
<tr>
<td>VIII. Link Modeling</td>
<td></td>
</tr>
<tr>
<td>IX. Link Examples</td>
<td></td>
</tr>
<tr>
<td>Second Exam</td>
<td>April 25</td>
</tr>
<tr>
<td>Project Report Due</td>
<td>May 1</td>
</tr>
<tr>
<td>Project Presentations</td>
<td>May 9</td>
</tr>
</tbody>
</table>

- Dates may change with reasonable notice
Next Time

• Channels
 • Components
 • Chip packages, PCBs, Wires, Connectors
 • Modeling
 • Wires, Transmission Lines