#### ECEN689: Special Topics in High-Speed Links Circuits and Systems Spring 2010

#### Lecture 16: Equalization Introduction



#### Sam Palermo Analog & Mixed-Signal Center Texas A&M University

#### Announcements

- HW4 due Wednesday 5PM
  - Any issues?
- Exam 1 is March 12
  - 9:10-10:10AM (10 extra minutes)
  - Closed book w/ one standard note sheet
    - 8.5"x11" front & back
  - Bring your calculator

## Agenda

- Equalization theory and circuits
  - Equalization overview
  - Equalization implementations
    - TX FIR
    - RX FIR
    - RX CTLE
    - RX DFE
  - Setting coefficients
  - Equalization effectiveness
  - Alternate/future approaches

## High-Speed Electrical Link System



## Link with Equalization



### **Channel Performance Impact**



 $(\mathbf{N})$ 

Voltage

### **Channel Performance Impact**



 $\geq$ 

Voltage

## **TX FIR Equalization**

 TX FIR filter pre-distorts transmitted pulse in order to invert channel distortion at the cost of attenuated transmit signal (de-emphasis)



# 6Gb/s TX FIR Equalization Example









- Pros
  - Simple to implement
  - Can cancel ISI in precursor and beyond filter span
  - Doesn't amplify noise
  - Can achieve 5-6bit resolution
- Cons
  - Attenuates low frequency content due to peak-power limitatior
  - Need a "back-channel" to tune filter taps



6Gb/s Eye - Refined BP Channel w/ TX FIR Eq



## RX Equalization #1: RX FIR



- Pros
  - With sufficient dynamic range, can amplify high frequency content (rather than attenuate low frequencies)
  - Can cancel ISI in pre-cursor and beyond filter span
  - Filter tap coefficients can be adaptively tuned without any back-channel
- Cons
  - Amplifies noise/crosstalk
  - Implementation of analog delays
  - Tap precision





Before Equalizer: 23meters

After Equalizer: 23meters

\*D. Hernandez-Garduno and J. Silva-Martinez, "A CMOS 1Gb/s 5-Tap Transversal Equalizer based on 3<sup>rd</sup>-Order Delay Cells," ISSCC, 2007.

## RX Equalization #2: RX CTLE



-0.3

-0.4

-0.5<mark>L</mark>

50

100

150

Time (ps)

200

250

300

Voltage -0.2 - 0 . 3 -0.4 -0.5 50 100 150 200 250 300 Time (ps)

50

11

Can be hard to tune

**PVT** sensitivity

Amplifies noise/crosstalk

## RX Equalization #3: RX DFE



- Pros
  - No noise and crosstalk amplification
  - Filter tap coefficients can be adaptively tuned without any backchannel

5

Voltage

- Cons
  - Cannot cancel precursor ISI
  - Critical feedback timing path
  - Timing of ISI subtraction complicates CDR phase detection



6Gb/s Eye - Refined BP Channel w/ No Eq 6



Eq 6Gb/s Eye - Refined BP Channel w/ RX DFE Eq



## **Equalization Effectiveness**



- Some observations:
  - Big initial performance boost with 2-tap TX eq.
  - With only TX eq., not much difference between 2 to 4-tap
  - RX equalization, particularly DFE, allows for further performance improvement
    - Caution hard to build fast DFEs due to critical timing path

## Next Time

- Equalization theory and circuits
  - Equalization implementations
    - TX FIR
    - RX FIR
    - RX CTLE
    - RX DFE
  - Setting coefficients
  - Equalization effectiveness
  - Alternate/future approaches