Announcements

• HW3 due now
• HW4 will be posted shortly
 • Involves transistor-level circuit design
 • Use 90nm or more advanced CMOS technology
 • Instructions on how to access 90nm CMOS models on website for students who don’t already have access to a design kit
• Exam 1 is March 12
 • 9:10-10:10AM (10 extra minutes)
 • Closed book w/ one standard note sheet
 • 8.5”x11” front & back
 • Bring your calculator
• Reading
 • Dally 11.1-11.3
 • Papers posted on TX drivers and RX comparator analysis
Agenda

• RX Circuits
 • Clocked comparators
 • Circuits
 • Characterization techniques
 • Integrating receivers
 • RX sensitivity
 • Offset correction
 • Demultiplexing receivers
High-Speed Electrical Link System
RX Block Diagram

- RX must sample the signal with high timing precision and resolve input data to logic levels with high sensitivity
- Input pre-amp can improve signal gain and improve input referred noise
 - Can also be used for equalization, offset correction, and fix sampler common-mode
 - Must provide gain at high-bandwidth corresponding to full data rate
- Comparator can be implemented with static amplifiers or clocked regenerative amplifiers
 - Clocked regenerative amplifiers are more power efficient for high gain
- Decoder used for advanced modulation (PAM4, Duo-binary)
Clocked Comparator LTV Model

- Comparator can be viewed as a noisy nonlinear filter followed by an ideal sampler and slicer (comparator).
- Small-signal comparator response can be modeled with an ISF $\Gamma(\tau) = h(t, \tau)$.

\[V_k = V_o(t_{obs} + kT) \]
Clocked Comparator ISF

- Comparator ISF is a subset of a time-varying impulse response \(h(t, \tau) \) for LTV systems:

\[
y(t) = \int_{-\infty}^{\infty} h(t, \tau) \cdot x(\tau) d\tau
\]

 - \(h(t, \tau) \): system response at \(t \) to a unit impulse arriving at \(\tau \)
 - For LTI systems, \(h(t, \tau) = h(t-\tau) \) (convolution)

- ISF \(\Gamma(\tau) = h(t_0, \tau) \)
 - For comparators, \(t_0 \) is before decision is made
 - Output voltage of comparator

\[
v_o(t_{obs}) = \int_{-\infty}^{\infty} v_i(\tau) \cdot \Gamma(\tau) d\tau
\]

- Comparator decision

\[
D_k = \text{sgn}(v_k) = \text{sgn}(v_o(t_{obs} + kT)) = \text{sgn}\left(\int_{-\infty}^{\infty} v_i(\tau) \cdot \Gamma(\tau) d\tau\right)
\]
Clocked Comparator ISF

- ISF shows sampling aperture or timing resolution
- In frequency domain, it shows sampling gain and bandwidth

\[
\text{ISF } \Gamma(\tau)
\]

F.T. \{ \Gamma(-\tau) \}

[J. Kim]
Characterizing Comparator ISF

1. Find Metastable $V_{ms}(\tau) = V_{os}(t \to \infty, \tau)$ such that $V(\text{out}+) = V(\text{out}-)$

2. Measure V_{MS} for varying τ

3. Derive ISF

$$SSF_{norm}(\tau) = \frac{V_{MS}(\tau) - V_L}{V_H - V_L}$$

$$ISF_{norm}(\tau) = \frac{d}{d\tau}SSF_{norm}(\tau)$$

[Jeeradit VLSI 2008]
Comparator ISF Measurement Setup

Strong-Arm Latch

CML Latch

Note: the aperture time is defined as the width that contains 80% of the sensitivity similar to [1]
Comparison of SA & CML Comparator (1)

- CML latch has higher sampling gain with small input pair
- StrongARM latch has higher sampling bandwidth
 - For CML latch increasing input pair also directly increases output capacitance
 - For SA latch increasing input pair results in transconductance increasing faster than capacitance
Comparison of SA & CML Comparator (2)

- Sampling time of SA latch varies with VDD, while CML isn’t affected much
Low-Voltage SA – Schinkel ISSCC 2007

Advantages:
• Less stacking
• Wide tail for fast latching
• More isolation between input and output

• Small tail → input stage in weak inversion → less offset from latch

• Does require clk & clk_b
 • How sensitive is it to skew?
Low-Voltage SA – Schinkel ISSCC 2007
Low-Voltage SA – Schinkel ISSCC 2007

90nm CMOS simulations. $\Delta V_{\text{in}} = 50\text{mV}$.
Circuits designed for equal offset $\sigma_{\text{os}} = 10\text{mV}$ at $V_{\text{cm}} = 1.1\text{V}$
Low-Voltage SA – Goll TCAS2 2009

- Similar stacking to conventional SA latch
- However, now P0 and P1 are initially on during evaluation which speeds up operation at lower voltages
- Does require clk & clk_b
 - How sensitive is it to skew?
Low-Voltage SA – Goll TCAS2 2009

![Graph showing delay of OUT-OUT vs supply voltage of comparator V_co (V). The graph compares conventional comparator and comparator with modified latch.](image-url)
Integrating RX & High-Frequency Noise

- A small aperture time is desired in most receiver samplers
- However, high-frequency noise can degrade performance at sampling time
 - Can be an issue in single-ended systems with excessive LdI/dt switching noise
- Integrating the input signal over a sampling interval reduces the high-frequency noise impact
Integrating Amplifier

- Differential input voltage converted to a differential current that is integrated on the sense nodes’ capacitance
Windowed Integration

- Windowing integration time can minimize transition noise and maximize integration of valid data

[Zerbe JSSC 2001]
RX Sensitivity

- RX sensitivity is a function of the input referred noise, offset, and minimum latch resolution voltage
 \[v_{sp}^{pp} = 2v_{n}^{rms} \sqrt{SNR} + v_{min} + v_{offset} \]

- Gaussian (unbounded) input referred noise comes from input amplifiers, comparators, and termination
 - A minimum signal-to-noise ratio (SNR) is required for a given bit-error-rate (BER)
 \[\text{For } BER = 10^{-12} (\sqrt{SNR} = 7) \]

- Minimum latch resolution voltage comes from hysteresis, finite regeneration gain, and bounded noise sources
 \[\text{Typical } v_{min} < 5mV \]

- Input offset is due to circuit mismatch (primarily \(V_{th} \) mismatch) & is most significant component if uncorrected
RX Sensitivity & Offset Correction

- RX sensitivity is a function of the input referred noise, offset, and min latch resolution voltage

\[v_{S}^{pp} = 2v_{n}^{rms} \sqrt{SNR} + v_{\text{min}} + v_{\text{offset}*} \]

Typical Values: \(v_{n}^{rms} = 1mV_{\text{rms}}, v_{\text{min}} + v_{\text{offset}*} < 6mV \)

For BER = 10^{-12} (\(\sqrt{SNR} = 7 \)) \(\Rightarrow v_{S}^{pp} = 20mV_{pp} \)

- Circuitry is required to reduce input offset from a potentially large uncorrected value (>50mV) to near 1mV
Next Time

- Receiver Circuits
 - Demultiplexing receivers

- Equalization theory and circuits