Lecture 11: Clocking Architectures & PLLs

Sam Palermo
Analog & Mixed-Signal Center
Texas A&M University
Announcements & Agenda

• Lab 6 Report due Apr. 3

• Clocking Architectures

• PLLs
 • Modeling
 • Noise transfer functions
References

- High-speed link clocking tutorial paper, PLL analysis paper, and PLL thesis posted on website
- Posted PLL models in project section
- Website has additional links on PLL and jitter tutorials
- Majority of today’s PLL material comes from Fischette tutorial and M. Mansuri’s PhD thesis (UCLA)
High-Speed Electrical Link System
Clocking Terminology

Synchronous
- Every chip gets same frequency AND phase
- Used in low-speed busses

Mesochronous
- Same frequency, but unknown phase
- Requires phase recovery circuitry
 - Can do with or without full CDR
- Used in fast memories, internal system interfaces, MAC/Packet interfaces

Plesiochronous
- Almost the same frequency, resulting in slowly drifting phase
- Requires CDR
- Widely used in high-speed links

Asynchronous
- No clocks at all
- Request/acknowledge handshake procedure
- Used in embedded systems, Unix, Linux
I/O Clocking Architectures

• Three basic I/O architectures
 • Common Clock (Synchronous)
 • Forward Clock (Source Synchronous)
 • Embedded Clock (Clock Recovery)

• These I/O architectures are used for varying applications that require different levels of I/O bandwidth

• A processor may have one or all of these I/O types

• Often the same circuitry can be used to emulate different I/O schemes for design reuse
Common Clock I/O Architecture

- Common in original computer systems
- Synchronous system by design (no active deskew)
- Common bus clock controls chip-to-chip transfers
- Requires equal length routes to chips to minimize clock skew
- Data rates typically limited to ~100Mb/s

[Krauter]
Common Clock I/O Cycle Time

Cycle time to meet setup time

\[\max(T_{\text{clk-A}} + T_{\text{Aclk}} + T_{\text{drive}} + T_{\text{tof}} + T_{\text{receive}} + T_{\text{setup}}) - \min(T_{\text{Bclk}} - T_{\text{clk-B}}) < T_{\text{cycle}} \]
Common Clock I/O Limitations

- Difficult to control clock skew and propagation delay
- Need to have tight control of absolute delay to meet a given cycle time
- Sensitive to delay variations in on-chip circuits and board routes
- Hard to compensate for delay variations due to low correlation between on-chip and off-chip delays
- While commonly used in on-chip communication, offers limited speed in I/O applications
Forward Clock I/O Architecture

- Common high-speed reference clock is forwarded from TX chip to RX chip
 - Mesochronous system
- Used in processor-memory interfaces and multi-processor communication
 - Intel QPI
 - Hypertransport
- Requires one extra clock channel
- “Coherent” clocking allows low-to-high frequency jitter tracking
- Need good clock receive amplifier as the forwarded clock is attenuated by the channel
Forward Clock I/O Limitations

- Clock skew can limit forward clock I/O performance
 - Driver strength and loading mismatches
 - Interconnect length mismatches

- Low pass channel causes jitter amplification

- Duty-Cycle variations of forwarded clock
Forward Clock I/O De-Skew

- Per-channel de-skew allows for significant data rate increases
- Sample clock adjusted to center clock on the incoming data eye
- Implementations
 - Delay-Locked Loop and Phase Interpolators
 - Injection-Locked Oscillators
- Phase Acquisition can be
 - BER based – no additional input phase samplers
 - Phase detector based implemented with additional input phase samplers periodically powered on
Forward Clock I/O Circuits

- TX PLL
- TX Clock Distribution
- Replica TX Clock Driver
- Channel
- Forward Clock Amplifier
- RX Clock Distribution
- De-Skew Circuit
 - DLL/PI
 - Injection-Locked Oscillator
Embedded Clock I/O Architecture

- Can be used in mesochronous or plesiochronous systems
- Clock frequency and optimum phase position are extracted from incoming data stream
- Phase detection continuously running
- CDR Implementations
 - Per-channel PLL-based
 - Dual-loop w/ Global PLL &
 - Local DLL/PI
 - Local Phase-Rotator PLLs
Embedded Clock I/O Limitations

- Jitter tracking limited by CDR bandwidth
 - Technology scaling allows CDRs with higher bandwidths which can achieve higher frequency jitter tracking

- Generally more hardware than forward clock implementations
 - Extra input phase samplers
Embedded Clock I/O Circuits

- TX PLL
- TX Clock Distribution
- CDR
 - Per-channel PLL-based
 - Dual-loop w/ Global PLL &
 - Local DLL/PI
 - Local Phase-Rotator PLLs
 - Global PLL requires RX clock distribution to individual channels
PLLS

- PLL modeling

- PLL noise transfer functions
A phase-locked loop (PLL) is a negative feedback system where an oscillator-generated signal is phase AND frequency locked to a reference signal.

\[F_{\text{out}} = N \cdot F_{\text{ref}} \]
PLL Applications

• PLLs applications
 • Frequency synthesis
 • Multiplying a 100MHz reference clock to 10GHz
 • Skew cancellation
 • Phase aligning an internal clock to an I/O clock
 • Clock recovery
 • Extract from incoming data stream the clock frequency and optimum phase of high-speed sampling clocks
• Modulation/De-modulation
 • Wireless systems
 • Spread-spectrum clocking
Forward Clock I/O Circuits

- TX PLL
- TX Clock Distribution
- Replica TX Clock Driver
- Channel
- Forward Clock Amplifier
- RX Clock Distribution
- De-Skew Circuit
 - DLL/PI
 - Injection-Locked Oscillator
Embedded Clock I/O Circuits

- TX PLL
- TX Clock Distribution
- CDR
 - Per-channel PLL-based
 - Dual-loop w/ Global PLL &
 - Local DLL/PI
 - Local Phase-Rotator PLLs
 - Global PLL requires RX clock distribution to individual channels
Linear PLL Model

\[\phi_{\text{ref}} \xrightarrow{+} \phi_e \xrightarrow{\sum} K_{\text{PD}} \xrightarrow{v_e} F(s) \xrightarrow{v_c} K_{\text{VCO}} \xrightarrow{\frac{1}{s}} \phi_{\text{out}} \]

Phase Detector
Loop Filter
VCO
Loop Divider
Charge-pump supplies current to loop filter capacitor which integrates it to produce the VCO control voltage.

For stability, a zero is added with the resistor which gives a proportional gain term.

[Mansuri]
Understanding PLL Frequency Response

- Linear “small-signal” analysis is useful for understand PLL dynamics if
 - PLL is locked (or near lock)
 - Input phase deviation amplitude is small enough to maintain operation in lock range
- Frequency domain analysis can tell us how well the PLL tracks the input phase as it changes at a certain frequency
- PLL transfer function is different depending on which point in the loop the output is responding to

\[
\frac{\Phi_{\text{out}}}{\Phi_{\text{ref}}} \quad \text{Input phase response}
\]

\[
\frac{\Phi_{\text{out}}}{\Phi_{\text{vco}}} \quad \text{VCO output response}
\]

- \[\log(\text{frequency})\]

[Fischette]
PLL Noise Transfer Function

[Image of a block diagram showing the PLL noise transfer function.]

Mansuri
Input Noise Transfer Function

\[K_{o} \]

w/ a loop gain factor: \(K = \frac{I_{CP}K_{VCO}R}{2\pi N} \) (assumes \(K_{PD} = 1 \))

Input Phase Noise:
\[
H_{nIN}(s) = \frac{\phi_{out}}{\phi_{nIN}} = \frac{NK\left(s + \frac{1}{RC}\right)}{s^2 + Ks + \frac{K}{RC}} = \frac{N2\zeta\omega_n\left(s + \frac{\omega_n}{2\zeta}\right)}{s^2 + 2\zeta\omega_n s + \omega_n^2}
\]

Voltage Noise on Input Clock Source:
\[
T_{nIN}(s) = \frac{\phi_{out}}{v_{nIN}} = \left(\frac{\phi_{out}}{\phi_{nIN}}\right)\left(\frac{K_{o}}{s}\right) = \frac{K_{o}NK\left(s + \frac{1}{RC}\right)}{s\left(s^2 + Ks + \frac{K}{RC}\right)}
\]
Input Noise Transfer Function

\[H_{\text{in}}(s) = \frac{\phi_{\text{out}}}{\phi_{\text{in}}} = \frac{NK\left(s + \frac{1}{RC}\right)}{s^2 + Ks + \frac{K}{RC}} = \frac{N2\zeta\omega_n\left(s + \frac{\omega_n}{2\zeta}\right)}{s^2 + 2\zeta\omega_ns + \omega_n^2} \]

Simulation Parameters

\[\omega_n = 2\pi \times 1MHz, \quad \zeta = 1, \quad \omega_{\text{VCO}} = 2\pi \times 10GHz \]

\[K_{PD} = \frac{10\mu A}{2\pi \text{ rad}}, \quad K_{VCO} = \frac{2\pi(1GHz)}{V}, \quad N = 1 \]

\[C = 253pF, \quad R = 1.26k\Omega \]

\[K_0 = \frac{2\pi(1MHz)}{V}, \quad K_{\text{delay}} = 10\frac{ps}{V}, \quad \omega_{\text{buf}} = \omega_{\text{VCO}} \]

Input Phase Noise:

Input Voltage Noise on Input Clock Source:

\[T_{\text{in}}(s) = \frac{\phi_{\text{out}}}{\phi_{\text{in}}} = \left(\frac{\phi_{\text{out}}}{\phi_{\text{in}}}\right)\left(\frac{K_o}{s}\right) = \frac{K_oNK\left(s + \frac{1}{RC}\right)}{s\left(s^2 + Ks + \frac{K}{RC}\right)} \]
VCO Phase Noise:

\[H_{n_{VCO}}(s) = \frac{\phi_{out}}{\phi_{n_{VCO}}} = \frac{s^2}{s^2 + Ks + \frac{K}{RC}} = \frac{s^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \]

Voltage Noise on VCO Inputs:

\[T_{n_{VCO}}(s) = \frac{\phi_{out}}{V_{n_{VCO}}} = \left(\frac{\phi_{out}}{\phi_{n_{VCO}}} \right) \left(\frac{K_{VCO}}{s} \right) = \frac{K_{VCO}s}{s^2 + Ks + \frac{K}{RC}} \]

K_{VCO} is different if the input is at the V_{cntrl} input (K_{VCO}) or supply (K_{Vdd})
VCO Noise Transfer Function

\[H_{n_{VCO}}(s) = \frac{\phi_{out}}{\phi_{n_{VCO}}} = \frac{s^2}{s^2 + KS + \frac{K}{RC}} = \frac{s^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \]

VCO Phase Noise:

\[T_{n_{VCO}}(s) = \frac{\phi_{out}}{v_{n_{VCO}}} = \left(\frac{\phi_{out}}{\phi_{n_{VCO}}} \right) \left(\frac{K_{VCO}}{s} \right) = \frac{K_{VCO}s}{s^2 + KS + \frac{K}{RC}} \]

Voltage Noise on VCO Inputs:

Simulation Parameters

\[\omega_n = 2\pi \times 1MHz, \quad \zeta = 1, \quad \omega_{VCO} = 2\pi \times 10GHz \]

\[K_{PD} = \frac{10 \mu A}{2\pi \text{ rad}}, \quad K_{VCO} = \frac{2\pi(1GHz)}{V}, \quad N = 1 \]

\[C = 253 \text{ pF}, \quad R = 1.26k\Omega \]

\[K_0 = \frac{2\pi(1MHz)}{V}, \quad K_{delay} = 10 \frac{ps}{V}, \quad \omega_{buf} = \omega_{VCO} \]
Output Phase Noise:

\[H_{buf}(s) = \frac{\phi_{out}}{\phi_{buf}} = \frac{s^2}{s^2 + Ks + \frac{K}{RC}} = \frac{s^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \]

Voltage Noise on Buffer Inputs:

\[T_{buf}(s) = \frac{\phi_{out}}{v_{buf}} = \left(\frac{\phi_{out}}{\phi_{buf}} \right) \left(\frac{K_{delay} \omega_{VCO}}{s + \frac{K_{delay} \omega_{VCO}}{\omega_{buf}}} + 1 \right) \approx \frac{K_{delay} \omega_{VCO}}{s^2 + Ks + \frac{K}{RC}} \]
Clock Buffer Noise Transfer Function

Output Phase Noise:

\[H_{\text{out}}(s) = \frac{\phi_{\text{out}}}{\phi_{\text{buf}}} = \frac{s^2}{s^2 + Ks + \frac{K}{RC}} = \frac{s^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \]

Voltage Noise on Buffer Inputs:

\[T_{\text{vbuf}}(s) = \frac{\phi_{\text{out}}}{V_{\text{buf}}} = \left(\frac{\phi_{\text{out}}}{\phi_{\text{buf}}} \right) \left(\frac{K_{\text{delay}}\omega_{\text{VCO}}}{s} + 1 \right) \left(\frac{s}{\omega_{\text{buf}}} + 1 \right) \frac{s^2}{s^2 + Ks + \frac{K}{RC}} \approx \frac{K_{\text{delay}}\omega_{\text{VCO}}s^2}{s^2 + Ks + \frac{K}{RC}} \]

Simulation Parameters

\[
\begin{align*}
\omega_n &= 2\pi \times 1\text{MHz}, \quad \zeta = 1, \quad \omega_{\text{VCO}} = 2\pi \times 10\text{GHz} \\
K_{\text{PD}} &= \frac{10\mu A}{2\pi \text{ rad}}, \quad K_{\text{VCO}} = \frac{2\pi(1\text{GHz})}{V}, \quad N = 1 \\
C &= 253\text{ pF}, \quad R = 1.26k\Omega \\
K_0 &= \frac{2\pi(1\text{MHz})}{V}, \quad K_{\text{delay}} = 10\frac{\text{ps}}{V}, \quad \omega_{\text{buf}} = \omega_{\text{VCO}}
\end{align*}
\]
PLL Noise Transfer Function Take-Away Points

- The way a PLL shapes phase noise depends on where the noise is introduced in the loop.
- Optimizing the loop bandwidth for one noise source may enhance other noise sources.
- Generally, the PLL low-pass shapes input phase noise, band-pass shapes VCO input voltage noise, and high-pass shapes VCO/clock buffer output phase noise.
Oscillator Noise

Jitter

PHASE NOISE

[McNeill]
Oscillator Phase Noise Model

Leeson’s Model:

\[L(\Delta f) = 10 \log \left(\frac{2FkT}{P_{\text{sig}}} \left(1 + \left(\frac{1}{2Q \Delta f} \right)^2 \right) \left(1 + \frac{\Delta f_{1/f^3}}{\Delta f} \right) \right) \] (dBc/Hz)

- For improved model see Hajimiri papers
Open-Loop VCO Jitter

- Measure distribution of clock threshold crossings
- Plot σ as a function of delay ΔT
Open-Loop VCO Jitter

- Jitter σ is proportional to $\sqrt{\Delta T}$
- κ is VCO time domain figure of merit
VCO in Closed-Loop PLL Jitter

- PLL limits σ for delays longer than loop bandwidth τ_L

$$\tau_L = \frac{1}{2\pi f_L}$$
Ref Clk-Referenced vs Self-Referenced

- Generally, we care about the jitter w.r.t. the ref. clock (σ_x)
- However, may be easier to measure w.r.t. delayed version of output clk
 - Due to noise on both edges, this will be increased by a $\sqrt{2}$ factor relative to the reference clock-referred jitter
Converting Phase Noise to Jitter

- RMS jitter for ΔT accumulation

$$\sigma_{\Delta T}^2 = \frac{8}{\omega_o^2} \int_0^\infty S_\phi(f) \sin^2(\pi f \Delta T) df$$

- As ΔT goes to ∞

$$\sigma_T^2 = \frac{2}{\omega_o^2} R_\phi(0) = \frac{4}{\omega_o^2} \int_0^\infty S_\phi(f) df$$

- Integration range depends on application bandwidth
 - f_{min} set by standard
 - Ex. Assumed CDR tracking bandwidth
 - Usually stop integration at $f_o/2$ or f_o due to measurement limitations and aliasing components
PLL Linear Phase Model

\[\theta_{\text{out}}(s) = \frac{R(s+1)(R'Cl))}{s} \]

\[20\log_{10} \omega_{3dB} = 1.47 \text{ Mrad/s} \]

\[20\log_{10} \left| \frac{\theta_{\text{out}}(s)}{\theta_{\text{ref}}(s)} \right| \]

\[20\log_{10} \left| \frac{\theta_{\text{out}}(s)}{\theta_{\text{VCO}}(s)} \right| \]
PLL Linear Phase Model: Frequency Step Response

\[\Theta_{\text{ref}} \]

Phase input

\[\text{Error} \]

\[K(2\pi) \]

Phase Detector Gain

\[\frac{N(s+1)(R(s+1))}{s} \]

Loop Filter

\[K_{\text{vc}} \]

\[V_{\text{c}} \]

\[\Theta_{\text{out}} \]

No Cycle Slips Observed with Linear Model

VCO Control Transient Response of Multi-Band PLL

Frequency Step Input: \(\Theta_{\text{ref}}(s) = \frac{\Delta \omega}{\Delta f} = \frac{\Delta 510 \text{ Mrad/sec}}{325^2} \)

No Cycle Slips Observed with Linear Model
PLL Behavioral Model

- Written in SpectreHDL
- Also look at CppSim: http://www.cppsim.com/

```
// Multi-Band Phase Locked Loop Frequency Synthesizer Macromodel
// Main Spectre File
// Samuel Palermo
simulator lang=spectre
include "~/home/samuel/research/pll/macromodels/pd/dig_pfd/dig_pfd.def"
include "~/home/samuel/research/pll/macromodels/pd/lpf/lpf.def"
include "~/home/samuel/research/pll/macromodels/vco/vco.def"

// divider/divider.def
include "~/home/samuel/research/pll/macromodels/vco/reference.def"

// Power Supply
vdd dd 0 vsource dc=1
// Reference Signal
xref 0 control fref reference
vcontrol control 0 vsource type=pwl wave=[0 0.64 1u 0.64]

// Digital Tri-State Phase/Frequency Comparator
xvco pfd 0 dd fref fvco upbar down downbar dig_pfd
// Charge Pump
idup dd 1 isource dc=25u
idown 0 isource dc=25u

gup 1 vd up 0 relay vt1=0 vt2=1 ropen=100M rclosed=1m
gupbar 1 upbar 0 relay vt1=0 vt2=1 ropen=100M rclosed=1m
gdown vd 2 down 0 relay vt1=0 vt2=1 ropen=100M rclosed=1m
gdownbar dd 2 downbar 0 relay vt1=0 vt2=1 ropen=100M rclosed=1m

// Loop Filter
xfilter 0 vd lpf

gvreg vd 0 vd gnd 0 relay vt1=0 vt2=1 ropen=100M rclosed=10
// Voltage Controlled Oscillator
//xvco vd out vco (gain=45e6 fc=256e6)
xvco 0 vd out nv_temp vd_gnd + switch_vco (gu=0.8 dv=-0.8 gain=40e6 fc=256e6)
// Divider
xdivider 0 out fvco buffer n_temp divider (divisor=32) cp dc
```

timedom tran stop=20u step=20p ic=all maxstep=20p skipdc=yes relref=alllocal
simulator lang=spice
.ic vd=0
save vd control fref fvco nv_temp vd_gnd
.OPTIONS rawfmt=pfbin save=selected diagnose=yes vabstol=.01
.reltol=.99
**

```
// Digital Phase Frequency Detector Macromodel
// Samuel Palermo
subckt dig_pfd (gnd dd fref fvco up upbar down downbar)
include "~/home/samuel/research/pll/macromodels/pd/dig_pfd/dig_pfd.def"

// D Flip Flop Macromodel
// Samuel Palermo
module dff (gnd, D, CLK, Q, QBAR) ()
node [V, I] gnd, D, CLK, Q, QBAR, R ;

real Q_temp;
real QBAR_temp;
initial {
Q_temp=0;
QBAR_temp=0;
}
```

```
if (threshold (V(CLK, gnd)=-1, 1)) {
if (V(D,gnd)==1) {
Q_temp=1;
QBAR_temp=0;
}
else {
Q_temp=0;
QBAR_temp=1;
}
}
if (V(R, gnd)==0) {
Q_temp=0;
QBAR_temp=1;
```
PLL Frequency Step Response: Linear vs Behavioral Model

Frequency Step Input: $\theta_{io}(s) = \frac{\Delta \omega}{s^2} = \frac{\Delta 1.00 \text{ Mrad/sec}}{32s^2}$

No Cycle Slips Observed with Linear Model

Behavioral Macromodel of the PLL
Frequency Step Input of 2.5MHz
Next Time

- CDRs

- The following slides provide more details on PLL circuits. This 620 material may be useful for the project, but won’t be covered in detail on Exam 2.
Open-Loop PLL Transfer Function

\[H_{open}(s) = K_{PFD} \cdot \frac{I_{CP}}{2\pi} \cdot F(s) \cdot \frac{K_{VCO}}{s} \]

ignoring \(C_1 \):

\[H_{open}(s) = K_{PFD} \cdot \frac{I_{CP}}{2\pi \cdot C_{CP}} \cdot (1 + RC_{CP}s) \cdot \frac{K_{VCO}}{s^2} \]

(2nd order)

with \(C_1 \):

\[H_{open}(s) = K_{PFD} \cdot \frac{I_{CP}}{2\pi \cdot (C_{CP} + C_1)} \cdot (1 + RC_{CP}s) \cdot \frac{K_{VCO}}{s^2 \cdot [1 + R(C_{CP}||C_1)s]} \]

(3rd order)
Open-Loop PLL Transfer Function

- w/o C_1 (2nd order)
 - 40dB/dec
 - 20dB/dec
 - 0dB

- with C_1 (3rd order)
 - 40dB/dec
 - 20dB/dec
 - 0dB
 - ω_p3

[Sources: Mansuri]
Closed-Loop PLL Transfer Function

\[
\frac{\phi_{\text{out}}(s)}{\phi_{\text{in}}(s)} = H_{\text{closed}}(s) = \frac{H_{\text{open}}(s)}{1 + H_{\text{open}}(s) \cdot 1/N}
\]

ignoring \(C_1\):

\[
\frac{\phi_{\text{out}}(s)}{\phi_{\text{in}}(s)} = \frac{K_{\text{Loop}} \cdot (1 + RC_{\text{CP}}s)}{s^2 + (K_{\text{Loop}}/N)RC_{\text{CP}}s + K_{\text{Loop}}/N}
\]

\[
K_{\text{Loop}} = K_{\text{PFD}} \cdot K_{\text{VCO}} \cdot I_{\text{CP}}/(2\pi C_{\text{CP}})
\]
PLL Natural Frequency and Damping Factor

\[
\frac{\phi_{out}(s)}{\phi_{in}} = \frac{K_{Loop} \cdot (1 + RC_{CP}s)}{s^2 + (K_{Loop}/N)RC_{CP}s + K_{Loop}/N}
\]

Standard 2nd-order denominator: \(s^2 + 2\zeta\omega_n s + \omega_n^2 \)

Natural Frequency: \(\omega_n = \sqrt{\frac{K_{Loop}}{N}} \)

Damping Factor: \(\zeta = \frac{\omega_n}{\omega_z} \)

Loop Bandwidth: \(\omega_{3dB} = \omega_n \left(a + \sqrt{a^2 + 1} \right)^{\frac{1}{2}} \)

\[
a = 2\zeta^2 + 1 - \frac{\omega_n N}{K_{PD}K_{VCO}} \left(4\zeta - \frac{\omega_n N}{K_{PD}K_{VCO}} \right)
\]
Damping Factor Impact

- If damping factor is too low, frequency peaking occurs
 - Damping factor ~ 1 is usually preferred
- Excessively high damping also causes peaking
 - Need 3rd order model to observe this
Damping Factor Impact

- Peaking in frequency domain leads to ringing in the time domain

\[\theta_{ref}(s) = \frac{\Delta \omega}{s^2} \]

- \(K_{PD} = 25 \mu A/2\pi \)
- \(K_{VCO} = 2\pi 40 \text{ MHz}/V \)
- \(N = 32 \)
- \(\omega_n = 1 \) (normalized)
Charge-Pump PLL Circuits

- Phase Detector
- Charge-Pump
- Loop Filter
- VCO
- Divider
Phase Detector

- Detects phase difference between feedback clock and reference clock
- The loop filter will filter the phase detector output, thus to characterize phase detector gain, extract average output voltage (or current for charge-pump PLLs)

\[
\text{avg}\{V_e(t)\} = K_{PD}\Delta\phi
\]
Analog Multiplier Phase Detector

- If $\omega_1 = \omega_2$ and filtering out high-frequency term

$$y(t) = \frac{\alpha A_1 A_2}{2} \cos[(\omega_1 + \omega_2)t + \Delta\phi] + \frac{\alpha A_1 A_2}{2} \cos[(\omega_1 - \omega_2)t - \Delta\phi]$$

- α is mixer gain

- Near $\Delta\phi$ lock region of $\pi/2$: $y(t) \approx \frac{\alpha A_1 A_2}{2} \left(\frac{\pi}{2} - \Delta\phi \right)$

$$K_{PD} = -\frac{\alpha A_1 A_2}{2}$$

[Razavi]
XOR Phase Detector

- Sensitive to clock duty cycle
XOR Phase Detector

Width is same for both leading and lagging phase difference!

\[W = \frac{\Phi_{\text{ref}} - \Phi_{\text{div}}}{\pi} T/2 \]

\[W = \frac{\Phi_{\text{ref}} - \Phi_{\text{div}}}{\pi} T/2 \]

\[\text{avg}\{e(t)\} \]

\[\text{gain} = -\frac{2}{\pi} \]

\[\text{gain} = \frac{2}{\pi} \]

\[\Phi_{\text{ref}} - \Phi_{\text{div}} \]

phase detector range = \(\pi \)
Cycle Slipping

- If there is a frequency difference between the input reference and PLL feedback signals the phase detector can jump between regions of different gain
 - PLL is no longer acting as a linear system

\[\text{avg}\{e(t)\} \]

- Gain = \(-2/\pi\)
- Gain = \(2/\pi\)

\[\Phi_{\text{ref}} - \Phi_{\text{div}} \]

(positive feedback operation) (negative feedback operation)

[Perrott]
Cycle Slipping

- If frequency difference is too large the PLL may not lock
Phase Frequency Detector (PFD)

- Phase Frequency Detector allows for wide frequency locking range, potentially entire VCO tuning range.
- 3-stage operation with UP and DOWN outputs.
- Edge-triggered results in duty cycle insensitivity.
PFD Transfer Characteristic

UP=1 & DN=-1

- Constant slope and polarity asymmetry about zero phase allows for wide frequency range operation

\[
\text{gain} = \frac{1}{2\pi}
\]

[Perrott]
PFD Deadzone

- If phase error is small, then short output pulses are produced by PFD.
- Cannot effectively propagate these pulses to switch charge pump.
- Results in phase detector “dead zone” which causes low loop gain and increased jitter.
- Solution is to add delay in PFD reset path to force a minimum UP and DOWN pulse length.

$V_e(\Delta \theta)$ vs $\Delta \theta$

Diagram showing the relationship between $V_e(\Delta \theta)$ and $\Delta \theta$ with a dead zone indicated.

Diagram of the PFD circuit with a delay line (DLY) added to the reset path.
PFD Operation

Ref

FbClk

Cycle Slip

GoFaster

GoSlower

Min. Pulse Width

Vctl

[Fischette]
Charge-Pump PLL Circuits

- Phase Detector
- Charge-Pump
- Loop Filter
- VCO
- Divider
Charge Pump

• Converts PFD output signals to charge
• Charge is proportional to PFD pulse widths

PFD-CP Gain: $\left(\frac{1}{2\pi}\right)I_{CP}$
Simple Charge Pump

Issues
- Switch resistance can impact UP/DN current matching as a function of V_{ctrl}
- Clock feedthrough and charge injection from switches onto V_{ctrl}
- Charge sharing between current source drain nodes’ capacitance and V_{ctrl}

[Razavi]
Charge Pump Mismatch

- PLL will lock with static phase error
- Extra “ripple” on Vctrl
 - Results in frequency domain spurs at the reference clock frequency offset from the carrier

[Image showing waveforms for ideal and actual locked conditions with CP mismatch]

[Razavi]
Charge Pump w/ Improved Matching

- Amplifier keeps current source Vds voltages constant resulting in reduced transient current mismatch

[Young J SSC 1992]
Charge Pump w/ Reversed Switches

- Swapping switches reduces charge injection
 - MOS caps (Md1-4) provide extra charge injection cancellation

- Helper transistors Mx and My quickly turn-off current source

- Dummy brand helps to match PFD loading

[Ingino JSSC 2001]
Charge-Pump PLL Circuits

- Phase Detector
- Charge-Pump
- Loop Filter
- VCO
- Divider
Loop Filter

- Lowpass filter extracts average of phase detector error pulses
Loop Filter Transfer Function

- Neglecting secondary capacitor, C_2

\[F(s) = \frac{V_c(s)}{I_e(s)} = R \left(\frac{s + \frac{1}{RC_1}}{s} \right) \]
Loop Filter Transfer Function

- With secondary capacitor, C_2

$$Z(s) = \frac{1}{C_2} \left(\frac{1}{s + \frac{1}{RC_1}} \right) \frac{s + \frac{1}{s(C_1 + C_2)}}{s^2 + \frac{RC_1 C_2}{RC_1 C_2}}$$

Layout Extracted Loop Filter Frequency Response

- Pole at 0Hz
- Zero at $f = \frac{1}{2\pi RC_1} = 80.5\text{kHz}$
- Second Pole at $f = \frac{C_1 + C_2}{2\pi RC_1 C_2} = 915\text{kHz}$

VCO Control Voltage
Why have C2?

- Secondary capacitor smooths control voltage ripple
- Can’t make too big or loop will go unstable
 - $C_2 < \frac{C_1}{10}$ for stability
 - $C_2 > \frac{C_1}{50}$ for low jitter
Filter Capacitors

• To minimize area, we would like to use highest density caps

• Thin oxide MOS cap gate leakage can be an issue
 • Similar to adding a non-linear parallel resistor to the capacitor
 • Leakage is voltage and temperature dependent
 • Will result in excess phase noise and spurs

• Metal caps or thick oxide caps are a better choice
 • Trade-off is area

• Metal cap density can be < 1/10 thin oxide caps

• Filter cap frequency response can be relatively low, as PLL loop bandwidths are typically 1-50MHz
Charge-Pump PLL Circuits

- Phase Detector
- Charge-Pump
- Loop Filter
- VCO
- Divider
Voltage-Controlled Oscillator

- Time-domain phase relationship

\[
\phi_{out}(t) = \int \Delta \omega_{out}(t) \, dt = K_{VCO} \int v_c(t) \, dt
\]

\[
\omega_{out}(t) = \omega_0 + \Delta \omega_{out}(t) = \omega_0 + K_{VCO} v_c(t)
\]
Voltage-Controlled Oscillators (VCO)

- **Ring Oscillator**
 - Easy to integrate
 - Wide tuning range (5x)
 - Higher phase noise

- **LC Oscillator**
 - Large area
 - Narrow tuning range (20-30%)
 - Lower phase noise
Barkhausen’s Oscillation Criteria

Closed-loop transfer function:
\[
\frac{H(j\omega)}{1-H(j\omega)}
\]

• Sustained oscillation occurs if \(H(j\omega) = 1 \)

• 2 conditions:
 • Gain = 1 at oscillation frequency \(\omega_0 \)
 • Total phase shift around loop is \(n360^\circ \) at oscillation frequency \(\omega_0 \)
Ring Oscillator Example

Three-stage ring oscillator

\[H(s) = -\frac{A_0^3}{\left(1 + \frac{s}{\omega_0}\right)^3} \]

\[\omega_{osc} = \sqrt{3}\omega_0 \]

\[\tan^{-1}\left(\frac{\omega_{osc}}{\omega_0}\right) = 60^\circ \]

\[\frac{V_{out}(s)}{V_{in}(s)} = \frac{-A_0^3}{\left(1 + \frac{s}{\omega_0}\right)^3} \]

\[\left[1 + \left(\frac{\omega_{osc}}{\omega_0}\right)^2\right]^3 = 1 \]

\[A_0 = 2 \]
Ring Oscillator Example

- 4-stage oscillator
 - \(A_0 = \sqrt{2} \)
 - Phase shift = 45

- Easier to make a larger-stage oscillator oscillate, as it requires less gain and phase shift per stage

\[
H(s) = -\frac{A_0^3}{\left(1 + \frac{s}{\omega_0}\right)^3} \quad \omega_{\text{osc}} = \sqrt{3} \omega_0 \quad \tan^{-1} \frac{\omega_{\text{osc}}}{\omega_0} = 60^\circ
\]

\[
\frac{V_{\text{out}}(s)}{V_{\text{in}}(s)} = \frac{-A_0^3}{\left(1 + \frac{s}{\omega_0}\right)^3} = \frac{-A_0^3}{\left(1 + s/\omega_0\right)^3 + A_0^3}
\]

\[
\sqrt{1 + \left(\frac{\omega_{\text{osc}}}{\omega_0}\right)^2}^3 = 1
\]

\[
A_0 = 2
\]

[Sanchez]
LC Oscillator Example

- Oscillation phase shift condition satisfied at the frequency when the LC (and R) tank load displays a purely real impedance, i.e. 0° phase shift

LC tank impedance

$$Z_{eq}(s) = \frac{R_s + L_1 s}{1 + L_1 C_1 s^2 + R_s C_1 s}$$

$$|Z_{eq}(s = j\omega)|^2 = \frac{R_s^2 + L_1^2 \omega^2}{(1 - L_1 C_1 \omega^2)^2 + R_s^2 C_1^2 \omega^2}$$
LC Oscillator Example

- Transforming the series loss resistor of the inductor to an equivalent parallel resistance

\[L_P = L_1 \left(1 + \frac{R_S^2}{L_1 \omega^2}\right), \quad C_P = C_1, \quad R_P \approx \frac{L_1^2 \omega^2}{R_S} \]

\[\omega_1 = \frac{1}{\sqrt{L_P C_P}} \]

[Razavi]
LC Oscillator Example

- Phase condition satisfied at

- Gain condition satisfied when \((g_m R_P)^2 \geq 1\)

- Can also view this circuit as a parallel combination of a tank with loss resistance \(2R_P\) and negative resistance of \(2/g_m\)

- Oscillation is satisfied when

\[
\frac{1}{g_m} \leq R_P
\]
Supply-Tuned Ring Oscillator

\[T_{VCO} = 2nT_D \approx \frac{2nC_{stage}}{\beta(V_c - V_{th})} \]

\[K_{VCO} = \frac{\partial f_{VCO}}{\partial V_c} = \frac{\beta}{2nC_{stage}} \]

[Sidiropoulos VLSI 2000]
Current-Starved Ring Oscillator

Current-starved VCO.
Capacitive-Tuned Ring Oscillator

\[C_{eff} = \frac{C}{1 + sCR} \]
Symmetric Load Ring Oscillator

- Symmetric load provides frequency tuning at excellent supply noise rejection
- See Maneatis papers for self-biased techniques to obtain constant damping factor and loop bandwidth (% of ref clk)
LC Oscillator

- A variable capacitor (varactor) is often used to adjust oscillation frequency.

- Total capacitance includes both tuning capacitance and fixed capacitances which reduce the tuning range.

\[\omega_{osc} = \frac{1}{\sqrt{L_p C_p}} = \frac{1}{\sqrt{L_p (C_{tune} + C_{fixed})}} \]
Varactors

- **pn junction varactor**
 - Avoid forward bias region to prevent oscillator nonlinearity

- **MOS varactor**
 - Accumulation-mode devices have better Q than inversion-mode

[Perrott]

[88]

[Razavi]
Charge-Pump PLL Circuits

- Phase Detector
- Charge-Pump
- Loop Filter
- VCO
- Divider
Loop Divider

\[\phi_{\text{out}}(t) \rightarrow \frac{1}{N} \rightarrow \phi_{\text{fb}}(t) \]

- Time-domain model

\[\omega_{\text{fb}}(t) = \frac{1}{N} \omega_{\text{out}}(t) \]

\[\phi_{\text{fb}}(t) = \int \frac{1}{N} \omega_{\text{out}}(t) \, dt = \frac{1}{N} \phi_{\text{out}}(t) \]
Basic Divide-by-2

- Divide-by-2 can be realized by a flip-flop in “negative feedback”

- Divider should operate correctly up to the maximum output clock frequency of interest **PLUS** some margin
Divide-by-2 with TSPC FF

True Single Phase Clock Flip-Flop

- **Advantages**
 - Reasonably fast, compact size, and no static power
 - Requires only one phase of the clock

- **Disadvantages**
 - Signal needs to propagate through three gates per input cycle
 - Need full swing CMOS inputs
 - Dynamic flip-flop may have issues at very low frequency operation (test mode) depending on process leakage
Divide-by-2 with CML FF

- **Advantages**
 - Signal only propagates through two CML gates per input cycle
 - Accepts CML input levels

- **Disadvantages**
 - Larger size and dissipates static power
 - Requires differential input
 - Need tail current biasing

- Additional speedup (>50%) can be achieved with shunt peaking inductors
Binary Dividers: Asynchronous vs Synchronous

Asynchronous Divider

- **Advantages**
 - Each stage runs at lower frequency, resulting in reduced power
 - Reduced high frequency clock loading

- **Disadvantage**
 - Jitter accumulation

Synchronous Divider

- **Advantage**
 - Reduced jitter

- **Disadvantage**
 - All flip-flops work at maximum frequency, resulting in high power
 - Large loading on high frequency clock

[Perrott]
Jitter in Asynchronous vs Synchronous Dividers

Asynchronous
- Jitter accumulates with the clock-to-Q delays through the divider
- Extra divider delay can also degrade PLL phase margin

![Asynchronous Divider Circuit](image1)

Synchronous
- Divider output is “sampled” with high frequency clock
- Jitter on divider clock is similar to VCO output
- Minimal divider delay

![Synchronous Divider Circuit](image2)

[Perrott]
Dual Modulus Prescalers

Synchronous $\div 3/4$
- For $/15$, first prescaler circuit divides by 3 once and 4 three times during the 15 cycles

Asynchronous $\div 4$

Figures from Razavi
Injection-Locked Frequency Dividers

LC-oscillator type (/ 2)

\[V_O = V_O \cos(\omega_0 t + \varphi) \]

\[v_I = V_I \cos(2\omega_0 t) + I_{DC} \]

Ring-oscillator type (/ 3)

[Verma J SSC 2003, Rategh J SSC 1999]

- Superharmonic injection-locked oscillators (ILOs) can realize frequency dividers
- Faster and lower power than flip-flop based dividers
- Injection locking range can be limited

[Lo CI CC 2009]
Example PLL Design Procedure

• Design procedure for a 100-300MHz frequency synthesizer

• Step 1 – Determine VCO Tuning Range
 • Needs to be at least the output frequency range plus some margin (10-20%) dependent on PVT tolerance

 \[
 \text{VCO Tuning Range} = 100 - 300\text{MHz}^*
 \]
 • *Note if you want the frequency extremes (100 or 300MHz) you probably want to add some margin here

• Step 2 – Determine Loop Division Ratio, N
 • This is a function of what reference clocks you have access to, loop bandwidth, dominant noise sources
 \[N = 32 \]

• Step 3 – Determine Damping Factor
 • Damping factors between 0.5 and 2 are reasonable, with 0.7 or 1 commonly chosen
 \[\zeta = \frac{1}{\sqrt{2}} \approx 0.707 \]
Example PLL Design Procedure

• Step 4 – Determine natural frequency, ω_n
 • This is a function of the desired loop bandwidth and also the damping factor
 • Maximum loop bandwidth should be less than 1/10th the input reference clock for the loop to act as a continuous-time system

 Lowest Input Reference Frequency $= \frac{100\text{MHz}}{32} = 3.125\text{MHz}$

• Set the loop bandwidth with some margin - 75% of max value

 $\omega_{3dB} = (0.75)(2\pi)312.5\text{kHz} = 1.47\text{Mrad/s}$

• For a damping factor of 0.707

 $\omega_n = \frac{\omega_{3dB}}{2.06} = \frac{1.47\text{Mrad/s}}{2.06} = 714\text{krad/s}$
Example PLL Design Procedure

- **Step 5 – Determine K_{VCO}**
 - This is a function of the VCO and charge pump operating voltage range
 - Here I use a combination of discrete tuning caps, resulting in multiple frequency bands over the total frequency range

- **Step 6 – Determine Charge Pump Current & Filter Cap**

 \[
 K_{VCO} = \frac{(2\pi)65\text{MHz}}{1.6\text{V}} = 255\text{Mrad/sV}
 \]

 Set $I = 25\mu\text{A}$

 \[
 C_1 = \frac{(25\mu\text{A})(255\text{Mrad/sV})}{2\pi(32)(714\text{krad/s})^2} = 62.2\text{pF}
 \]

- **Step 7 – Determine Filter R and Secondary Cap**

 \[
 R = \frac{2\zeta}{\omega_n C_1} = \frac{2(0.707)}{\left(\frac{714\text{krad/s}}{s}\right)(62.2\text{pF})} = 31.8\text{k}\Omega
 \]

 \[
 C_2 < \frac{C_1}{10} = 6.22\text{pF} \Rightarrow C_2 = 6\text{pF}
 \]