Texas A\&M University Department of Electrical and Computer Engineering

ECEN 720 - High -Speed Links

Spring 2021

Exam \#2

Instructor: Sam Palermo

- Please write your name in the space provided below
- Please verify that there are 7 pages in your exam
- Good Luck!

Problem	Score	Max Score
1		25
2		25
3		25
4		25
Total		$\mathbf{1 0 0}$

Name:
SAM PALERMO

UN: \qquad

TABLE 13-1. $\quad Q_{\text {BER }}$ as a Function of the Bit Error Rate

BER	$Q_{\text {BER }}$	BER	$Q_{\text {BER }}$	BER	$Q_{\text {BER }}$
1×10^{-3}	6.180	1×10^{-10}	12.723	1×10^{-17}	16.987
1×10^{-4}	7.438	1×10^{-11}	13.412	1×10^{-13}	17.514
1×10^{-5}	8.530	1×10^{-12}	14.069	1×10^{-19}	18.026
1×10^{-6}	9.507	1×10^{-13}	14.698	1×10^{-20}	18.524
1×10^{-7}	10.399	1×10^{-14}	15.301	1×10^{-21}	19.010
1×10^{-8}	11.224	1×10^{-15}	15.882	1×10^{-22}	19.484
1×10^{-9}	11.996	1×10^{-16}	16.444	7.7×10^{-24}	20.000

Problem 1 (25 points)
A channel has a $10 \mathrm{~Gb} / \mathrm{s}$ pulse response, $\mathrm{y}^{(1)}$, below for a " 1 " bit. Assume that the ISI beginning at the second post-cursor position is equal to

$$
0.1 e^{-\frac{t}{144 p s}}
$$

The DFE shown below is used for equalization.
a) Given the DFE feedback filter design parameters to provide the maximum eye opening. Assume ideal delay cells.
b) What is the eye height that you can achieve with only this DFE equalization?

For maximum eye opening: $W_{1}=1_{\text {st }}$ post-cursor ISI $=0.3$ The RC filter weighted by W_{2} should cancel all I SI terms Starting with the 2nd post cursor.
The τ of the R_{C} filter should equal the τ of the $I \leq I$

$$
\tau=R C=144 \mathrm{ps} \rightarrow C=100 \mathrm{fF}, R=1.44 \mathrm{k} \sim
$$

The weighting coefficient ω_{z} should yield peak amplitude 0.1 . The peak response of the cpi is

$$
\begin{aligned}
& W_{2}\left(1-e^{-\frac{T_{b}}{\tau}}\right)=0.1 \\
& w_{1}=0.3 \\
& w_{2}=0.2 \\
& W_{2}=\frac{0.1}{1-e^{-\frac{100 \rho}{144 \rho}}=0,2} \\
& R=1.44 \mathrm{l} R \\
& \mathrm{C}=100 \mathrm{FF} \\
& \text { The DFE should cancel all but the precursor ISF }
\end{aligned}
$$

\qquad

$$
=2(0.45-0.05)=0.8
$$

Problem 2 (25 points)
This problem involves the voltage noise budgeting of a serial link system. Here we will conservatively assume that all distributions combine in a worst-case manner. The system consists of a transmitter with a 3-tap FIR filter which sends NRZ bits over a channel to a receiver modeled as a simple amplifier followed by a comparator. Each receiver block has a noise

$$
\begin{aligned}
& \text { component which should be referred to the receiver input. } \quad \sigma_{\mathrm{k}_{x}}=\sqrt{1^{2}+\left(\frac{2}{2}\right)^{2}}=1.41 \mathrm{mV} \\
& A_{\text {+ +nation }}=1-\sum_{\operatorname{taps}}=1-0.4=0.6 \quad \sigma_{\mathrm{n}, \mathrm{amp}}=1 \mathrm{mV} \quad \sigma_{\mathrm{n}, \text { comp }}=2 \mathrm{mV}
\end{aligned}
$$

TX NR
(PAM)
Bits

Complete the following noise budget table assuming a TX peak differential swing of $1 \mathrm{~V}_{\mathrm{ppd}}$ and a target $\operatorname{BER}=10^{-12}$. You can refer to the $\mathrm{Q}_{\text {bier }}$ table on page 2 if needed. (10 points)

Parameter	\mathbf{K}_{n}	RMS	Value $\left(\mathbf{B E R}=\mathbf{1 0}^{-12}\right)$
Peak Differential Swing, $\mathrm{V}_{\text {swing }}$			1 V
RX Offset + Sensitivity			10 mV
Power Supply Noise			10 mV
Residual ISI	0.1		$=100 \mathrm{mV}$
Crosstalk	0.1		$=100 \mathrm{mV}$
Random Noise			1.41 nV
Attenuation (TX FIR)			$=19.84 \mathrm{mV}$
Total Noise			$=8.39 .84 \mathrm{mV}$
Differential Eye Height Margin			$=160.16 \mathrm{mV}$

What is the minimum peak differential swing, $\mathrm{V}_{\text {swing }}$, for a $\mathbf{B E R}=10^{-\mathbf{1 2}}$, ie. as the differential eye height margin goes to zero?

$$
V_{\text {swing }} \geq \frac{\text { FiedNoise }}{1-\Sigma K_{N}}=\frac{39.8 \mathrm{Km}_{\mathrm{m}} \mathrm{~V}}{1-0.8}=199.2 \mathrm{mV}
$$

What is the minimum peak differential swing, $\mathrm{V}_{\text {swing, }}$, for a $\mathbf{B E R}=\mathbf{1 0}^{\mathbf{- 1 8}}$, ie. as the differential eye height margin goes to zero?

$$
\begin{aligned}
\text { For } \left.\begin{array}{rl}
B E R & =10^{-18} \text { Random Noise } \Rightarrow 1.41 \mathrm{mV}(17.514)=24.7 \mathrm{mV} \\
V_{\text {swing }} & \geq \frac{44.7 \mathrm{mV}}{1 .-0.8}=223.5 \mathrm{mV}
\end{array}\right) .
\end{aligned}
$$

Problem 3 (25 points)
This problem involves the timing noise budgeting of serial link systems.
i. System jitter can be decomposed into the following random and deterministic jitter PDFs. Qualitatively sketch the total jitter PDF and give the total jitter at a $\mathbf{1 0}^{-\mathbf{1 5}}$ BR.

Random Jitter Deterministic Jitter $\sigma=2 \mathrm{ps}$

Total Jitter

$$
\text { s) } \begin{aligned}
T J & =D J_{\gg}+Q_{B E R} \sigma_{R S} \\
& =19 p 5+15.882(2 p s)=41.8 \rho s
\end{aligned}
$$

$$
\mathrm{TJ}\left(\mathbf{B E R}=10^{-15}\right)=41.8 \text { ps }
$$

ii. Given the following jitter components from the TX, channel, and RX. What is the maximum RX random rms jitter, $\sigma_{\mathrm{RJ}, \mathrm{RX}}$, for a $\mathbf{B E R}=\mathbf{1 0}^{-12}$ at a $25 \mathrm{~Gb} / \mathrm{s}$ data rate?

$$
\begin{aligned}
& \begin{array}{|c|c|c|}
\hline T X \\
\begin{array}{c}
\sigma_{R J}=0.5 \mathrm{ps} \\
\mathrm{DJ}=2 \mathrm{ps}
\end{array} & \begin{array}{c}
\text { Channel } \\
\mathrm{DJ}=10 \mathrm{ps}
\end{array} \\
\begin{array}{c}
\mathrm{RX} \\
\sigma_{\mathrm{RJ}}=? \\
\mathrm{DJ}=4 \mathrm{ps}
\end{array} \\
\hline
\end{array} \\
& D J_{\text {tot }}+Q_{\text {ER }} \sigma_{j, \text { tot }}=\frac{1}{D R} \\
& \delta_{j, \text { tat }}=\frac{\frac{1}{D R}-D J_{j} \text { tot }}{Q_{B E R}}=\frac{40 \mathrm{ps}-16 \mathrm{ps}}{14.069}=1.71 \mathrm{ps} \\
& \sigma_{j, \text { tox }}=\sqrt{1 \sigma_{T X}^{2}+\sigma_{R x}^{2}} \Rightarrow \sigma_{R X}=\sqrt{\sigma_{j++t}^{2}-\sigma_{T X}^{2}}=\sqrt{(1.71, s s)^{2}-(0.5, s)^{2}} \\
& \operatorname{Max} \sigma_{\mathrm{RI}, \mathrm{RX}}(\mathrm{w} / \mathrm{DR}=25 \mathrm{~Gb} / \mathrm{s})=1.64 \mathrm{ps}
\end{aligned}
$$

Problem 4 (25 points)
The figure below models a forwarded-clock system with a receiver de-skew circuit that consists of an injection locked LC oscillator (ILO).
a) If the ILO has a 5 GHz center frequency and a $Q=6$, what is the injection strength required for a maximum jitter tracking bandwidth of 200 MHz ?
b) Using the injection strength from part (a), what frequency offset should the injection signal have to generate a 45° phase shift?
c) With a 45° phase shift, what is the jitter tracking bandwidth?

KEY EQUATIONS

$$
\text { a. For max JTB } \Rightarrow \omega_{p}=\frac{K}{A}
$$

$$
\begin{aligned}
& \omega_{p}=\sqrt{\frac{K^{2}}{A^{2}}-\Delta \omega^{2}} \\
& \theta_{s s}=\sin ^{-1}\left(\frac{A}{K} \Delta \omega\right) \\
& A=\frac{2 Q}{\omega_{0}}=\frac{12}{2 \pi(j \operatorname{con} 4)}=382 \mathrm{ps} \\
& K=A \omega_{p}=\frac{2 Q}{\omega_{0}} \omega_{p}=\frac{2(6)}{2 \pi(56+12)}(2 \pi 200 m H z) \\
& \text { b. } \Delta \omega=\frac{K}{A} \sin \theta_{s s}=\frac{0.48(2 \pi)(56 \mathrm{~Hz})}{2(6)} \sin 45^{\circ}=888 \mathrm{Mrad} / \mathrm{s}=14 / \mathrm{MHz} \\
& \text { c. } \begin{aligned}
\omega_{p}=\sqrt{\frac{K^{2}}{A^{2}}-\Delta \omega^{2}}=\sqrt{\frac{(0,48)^{2}}{(382,5)^{2}}-(888 \mathrm{Mrad} / 5)^{2}} & =889 \mathrm{mrad} / \mathrm{s} \\
& =142 \mathrm{MHz}
\end{aligned} \\
& \mathrm{~K}(\max \mathrm{JTB}=200 \mathrm{MHz})=0.48 \\
& \Delta f\left(\theta_{\mathrm{ss}}=45^{\circ}\right)=14 / \mathrm{MHz} \\
& \operatorname{JTB}\left(\theta_{\mathrm{ss}}=45^{\circ}\right)=1 \nless 2 \mathrm{MHz}
\end{aligned}
$$

