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Younghoon Song 

1. Build a macromodel of a 4-bit parallel PRBS generator and verifier.  The PRBS sequence length 
should be 27

 

-1.  Refer to Appendix A in Ken Yang’s thesis for some intro material on parallel 
PRBS implementations. 

For very high-speed generation of PRBS sequences, it is useful to know which architecture is optimal for 
a particular application. The different options that can be considered are parallel versus series PRBS 
generator architectures and the level of multiplexing. The level of multiplexing determines how much 
slower, relative to the final output, the core generator is operated, thus requiring proportionally less 
power. However, if the multiplexing level is too deep, too much power might be spent in the multiplexer 
itself. Figure 1 shows serial PRBS generation and detection configuration. 
 

 
A.  Serial PRBS Generation and Error Detection 
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Figure 1 Serial PRBS generation and Error Detection 
 
Series PRBS generators are linear feedback shift registers, where the length of the register n and the 
feedback function determine the length of the sequence p=2^n -1[1]. For multiplexing the sequence to q 
times the original bit rate, original sequences, spaced apart by (p-1)/q bits in phase are required [2]. An 
efficient, algorithm exists for obtaining the phase shifts, nevertheless, the number of XOR gates required 
to implement the phase shifts in hardware grows exponentially with q, which is shown in Figure2. 
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Figure 2 2^7-1 Serial PRBS Generation 



In simulation, the initial condition was zero, therefore the resister remains in a degenerate state. 
XNOR gate was used instead of some method of initialization.  
 
The error detection is based on the principle of multiplication by a reciprocal polynomial. The technique 
uses the same length shift register chain as in the generating polynomial. In Figure 3, the serial detection 
scheme is shown. The shift register is continuously fed by the incoming bit stream and the shift register 
outputs are XNOR in the same manner as in the generating polynomial. The XNOR output, which is 
inverse with Din compare with Din XOR gate. If there bits are inverse, the checker generates a no error 
flag, BQ, for the incoming data. If the bits same, an error is flagged. The technique allows self 
synchronization to the incoming bit stream, without using any additional hardware. 
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Figure 3 ERROR Detection for PRBS = 2^7-1 

Simulation Result: PRBS Generation, 1 to 4 Demux, 4 to 1 MUX, and PRBS detection 

 

Figure 4 10Gbps 2^7 – 1 PRBS Generation and Detection 



Figure 4 shows simulation result. Initially error exists; however it is not valid time for error detection. 
Therefore we can ignore those errors.  

 

 
B. 4 bits Parallel PRBS Generation and Purposed Error Detection 

In the parallel PRBS generator and detector architecture, which is shown figure 5, the phase shifted 
sequences are available directly from the generator. The n*m transition matrix T, which can be obtained 
from the characteristic polynomial of the PRBS, proves useful for constructing parallel PRBS generators. 
A procedure for translating into the PRBS generator schematic with parallel outputs is given in [3]. The 
resulting outputs are phase shifted appropriately for direct multiplexing. 
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Figure 5 Parallel PRBS generator and detector architecture 
 
The circuit requires n flip-flops as in the traditional method, but m XOR gates are needed to generate 
parallel m-bit data streams. Figure 6 shows the connections among flip-flops and XOR gates to form a 
parallel generator. The flip-flops are connected as a parallel register with the output fed back to the 
input through the XOR gates. The XOR gates are connected so each bit of the new word is generated 
according to a given polynomial equation. In this paper, we have used 4-to-I multiplexer to form a single 
high-speed bit stream using the low-speed parallel data generated by 4-bit parallel PRBS generators. 
The XOR gates are connected so each bit of the new word is generated according to the polynomial 
equation. For example, on the first clock cycle, bit six of the PRBS is generated by XOR bit 1 and bit 3, 
which are presently held in the register. At the same time, bit 7 is generated from bits 2 and 4. A slight 
irregularity occurs at the bottom of the register. In order to calculate bit 9, bits 4 and 6 are required. Bit 
6 is not held in the register, so it must be obtained from an earlier XOR, where it is being calculated. 
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Figure 6 N=5, W=4 2^7-1 Parallel PRBS Generator [3] 

Again, to prevent it remains in a degenerate state. XNOR gate was used instead of some method of 
initialization.  
 

Data 1[n-1] = D5 [n] 

Data2 [n-1] = XNOR (Data1[n], Data3[n] ) 

Data3 [n-1] = XOR ( Data2[n],Data4[n] ) 

Data4 [n-1] = XOR ( Data3[n], Data[5] ) 

D5 [n-1] = XOR ( Data4[n], XNOR (Data1[n+1], Data3[n+1] ) ) 

D5 internally used for 4 bit Parallel PRBS generation. 
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Figure 7 2^7-1 4 Bits Purposed Parallel PRBS ERROR Detection 

Purposed Error detection configuration is simple. We know how to generate Data 1 – 4 based on PRBS 
generation equation. Therefore it simply compares incoming data and internally generation data. They 
are XORed, thus it will generate Zero, if they are identical. Finally 4 data are ORed, therefore if one of 
data has error, it will generate ERROR signal. However, this configuration has to be well design for 
timing such as match gate delay. 

 

 

 

 

 

 

 



Simulation Result: 2.5Gbps 4 bits parallel PRBS Generation and PRBS Error detection 

2^7-1 PRBS 2.5Gbps 4 bits was generate. Figure 8 show if generation data match with receiving date, as 
we expect, there have no error. 

   

 

Figure 8 PRBS generation and Detection without ERROR 

To see error detection performance, RX data 2 error bit was generated, which is shown in Figure 9. As 
we can see PRBS error detection detects this ERROR. 

 

 

Figure 9 PRBS generation and Detection with ERROR 
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2. Build both a time-domain and frequency domain macromodel for a charge-pump PLL with a 
standard filter consisting of 1 resistor and 2 capacitors.   
a. The models should have all major PLL components programmable, i.e. reference clock 

frequency, charge-pump current, filter R and Cs, VCO gain and center frequency, loop 
division factor, etc. 

b. The models can be implemented in either Matlab, Simulink, or CppSim. 
c. For the frequency domain PLL model, have the ability to input various noise spectrums at 

the PLL input, VCO input, and VCO output.  The model should integrate the output phase 
noise over a user programmable bandwidth to calculate the random jitter rms value.  
Provide test cases with noise spectrums injected at the PLL input, VCO input, and VCO 
output. 

 

1. Charge Pump PLL Design  

A. PLL Modeling (Part a and b)  

Fig. 1 is a block diagram of a charge pump based PLL 
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Figure 1 Block diagram of a charge pump based PLL and PLL specification 
 
 
 
 
 



Free running frequency and a gain of VCO are given as 2.4 GHz and 1 GHz/V, respectively.  
 

2.4

2 1 /
freerun

VCO

f GHz
K GHz Vπ

=

= ×
 

 
FREF

Required dividing ratios would be 
 can be 5 MHz, and it enables to use integer frequency divider. 

N = 480 

Now, loop parameters should be determined. Since loop has one zero and two poles (one is at zero 
frequency), a zero and pole frequency should be determined.  
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Open-loop phase transfer function from an input of PFD to the output of divider is 
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where 1/2π is a PFD gain, Icp is a CP gain and KVCO

 
 is a VCO gain.  

Starting from Gardner’s stability limit, cross-over frequency (ωc

 

) should be less enough than reference 
frequency.  

2 5 2 500
10 10
REF

c
MHz KHzω πω π×

< = = ×  

 

Damping factor is usually in between 0.707 and 2. Damping factor of 1 means that two poles in closed-
loop transfer function would be overlapped. Damping factor less than 1 is that two poles are complex 
conjugated. 
For an optimal settling time and bandwidth, damping factor of 0.707 (under damped) is chosen.  
 

0.707ξ =  
Natural frequency can be decided by cross-over frequency and damping factor 
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With calculated frequencies in above equations, pole and zero frequencies can be decided.  
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As seen above, pole frequency is 4 times higher than zero frequency. However, system stability is 
affected by pole frequency through phase margin; it is desirable to separate pole frequency from at 
least 8 times higher than zero frequency. Hence, pole frequency is adjusted by factor of 2.  
 

2 2p MHzω π= ×  

 
Note that small damping factor makes the separation of pole and zero to be smaller, which makes the 
system fast but not much stable. 
 
Settling time can be estimated as 
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where f0 is the frequency from which the synthesizer starts transition, Δf is the amount of frequency 

jump and α is the settling accuracy. With f0 = 2.405 GHz, Δf = 75 MHz and α = 25×10
-6

Closed loop system transfer function is  

, the settling time 
would be 4.8 μsec which is well below than the specification with a good margin. 
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Transfer function can be approximated as a second order with the assumption that ωp is much higher 
than ωn

From natural frequency, Cz,  Cp and Rz can be determined  
.  
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In order to calculate the numbers of loop filter, current of charge pump should be decided. Considering 
power consumption of charge pump, 0.1mA would be 0.12 mW if VDD = 1.2V, which is reasonable 
number.  

I=0.1mA 
 
To calculate Cz, Rz, Cp, N is assumed to be the 480.  
 

42 , 15 , 5.3Cz pF Rz K Cp pF= = Ω ≅  
2. Simulation Result 

Input parameter by Users 
 
1.  Input Clock Frequency 
2.  Charge Pump parameters 

Charge pump Current 
Error up 
Error Down 
Slew rate 

3. Loop Filter parameters 
 Rz, Cz, and Cp 
 4. KVCO parameters.  
 KVCO  
 Free running Frequency  
5. Divider Parameter 
 

Time Domain Test model by Simulink 

 

Figure 2 Time Domain Test model – Simulink  



 

   (a) PFD       (b) CP 

 

                                            (c) Loop Filter      (d) N divider  
  

Figure 3 PLL Each Block configuration 

Figure 2 and 3 shows PLL implementation for time domain analysis.  
                                                                      

 

                                        (a)                                                                                           (b) 

Figure 4 a) The output of CP and b)Controle Voltage of VCO 

Figure 4 shows charge pump output and loop filter output. Initial VCO free runing frequency was set 
2.3GHz (Kvco = 1GHz/V). Due to Feedback loop, controle voltage converge to 0.1V.  



 

Figure 5 Closed Loop Step Response 

Figure 5 shows that settling time for 0.1% accuracy is 4.2 μsec and it is closed to calculated value of 4.8 
μsec.  
 
 Frequency Domain Analysis by Matlab  

Figure 6 is the magnitude and phase response plot. It shows the two poles at zero frequency (phase is  
-180) and there are zero and pole, corresponding to peak at phase response. 

 
Figure 6 Open Loop Transfer function 

Phase Margin = 51 deg, fzero = 253KHz, fcross=510KHz, and fpole(max)=2.25MHz 
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1. Noise Contributors in a PLL 

B. PLL RMS Jitter Calculation Based on 3 different input noise (part c) 

All the blocks of the PLL (shown in Figure 1) contribute towards random noise. But some contribute it 
more than others. The contribution of noise by the divider, PFD and charge pump is very minimal. One 
reason for this is that, once the PLL has locked, the PU and the PD signals driving the charge pump are 
on for a very short duration. 

On the other hand, the Loop Filter resistance and the VCO contribute the most noise. One more thing to 
keep in mind is that the VCO output noise is high pass filtered, while the (PFD + Charge pump) input 
referred noise is low pass filtered to the output. So these blocks contribute to different components of 
jitter. While the Loop Filter and VCO contribute significantly to short term jitter, the PFD and Charge 
Pump contribute to long term jitter. 

2. Jitter 

Jitter is nothing, but the time domain equivalent of phase noise. There are essentially two ways of 
characterizing jitter: long term (or cycle jitter) and short term (or cycle to cycle jitter). Based on the 
application, one or both might be important. Both random and deterministic noise, contribute to long 
term and short term jitter. If the application is serial communication, where one is more interested in bit 
error rate, then long term jitter is a proper characteristic. If the application is digital signal processing, 
then short term jitter is of more use, as it would decide the clock period and timing margins. 

3. Definitions of Jitter 

We consider the output voltage Vout(t) of an oscillator in the steady state.  
 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝑉𝑉) =  𝐴𝐴(𝑉𝑉)𝑓𝑓[𝜔𝜔𝑉𝑉𝑉𝑉 + 𝜃𝜃(𝑉𝑉)] 
 
The time point of the nth zero crossing of Vout(t) is referred to as tn. The nth period is then defined as 
Tn = tn+1 - tn. For an ideal oscillator, this time difference is independent of n, but in reality it varies with 
n as a result of noise in the circuit. This results in a deviation ∆Tn = Tn - T from the mean period T. The 
quantity ΔTn is an indication of jitter. 

More specifically, absolute jitter or long-term jitter 

∆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑁𝑁) = �∆𝑇𝑇𝑇𝑇
𝑁𝑁

𝑇𝑇=1

 

is often used to quantify the jitter of phase-locked loops. Modeling the total phase error with respect to 
an ideal oscillator, absolute jitter is nonetheless ill suited to describing the performance of oscillators 
because, the variance of ΔTabs diverges with time.  
 
 



A better figure of merit for oscillators is cycle jitter, defined as the rms value of the timing error ∆ Tn 

∆𝑇𝑇𝑇𝑇 = lim
𝑇𝑇→∞

��
1
𝑁𝑁
�∆𝑇𝑇𝑇𝑇2
𝑁𝑁

𝑇𝑇=1

� 

Cycle jitter describes the magnitude of the period fluctuations, but it contains no information about the 
dynamics.  
 
The third type of jitter is cycle-to-cycle jitter given by 

∆𝑇𝑇𝑇𝑇𝑇𝑇 = lim
𝑇𝑇→∞

��
1
𝑁𝑁
�(𝑇𝑇𝑇𝑇+1 − 𝑇𝑇𝑇𝑇)2
𝑁𝑁

𝑇𝑇=1

� 

Note the difference between the cycle jitter and the cycle-to-cycle jitter: the former compares the 
oscillation period with the mean period and the latter compares the period with the preceding period. 
Hence, in contrast to cycle jitter, cycle-to-cycle jitter describes the short term dynamics of the period. 
The long-term dynamics, on the other hand, are not characterized by cycle-to-cycle jitter. With respect 
to the zero crossings, the cycle-to-cycle jitter is a double-differential quantity in that three zero crossings 
of the output voltage is related to each other. We should note that an oscillator embedded in a phase-
locked loop periodically receives correction pulses from the phase detector and charge pump, and 
hence its long-term jitter strongly depends on the PLL dynamics. Thus, for the analysis of a free-running 
oscillator, cycle jitter and cycle-to-cycle jitter are more meaningful, particularly because the latter type 
hardly changes when the oscillator is placed in the loop. 

4. Frequency Domain Jitter Analysis [1] 

Relationship between timing jitter and noise power spectral density 

The relationship between the timing jitter, 𝜎𝜎∆𝑇𝑇2  and noise power spectral density, 𝑆𝑆𝜙𝜙(𝑓𝑓) is 

𝜎𝜎∆𝑇𝑇2 =
8
𝜔𝜔0

2 � 𝑆𝑆𝜙𝜙(𝑓𝑓)sin2(𝜋𝜋𝑓𝑓Δ𝑇𝑇)𝑑𝑑𝑓𝑓
00

0
 

At long cycles (Δ𝑇𝑇 → 𝑉𝑉𝑉𝑉), the expression is simplified as : 

𝜎𝜎∆𝑇𝑇2 =
4
𝜔𝜔0

2 � 𝑆𝑆𝜙𝜙(𝑓𝑓)𝑑𝑑𝑓𝑓
00

0
 

Δ𝑇𝑇 = cycles * 1/(output frequency)  

Timing jitter is called short-term jitter for small ∆T and long term jitter as ∆T goes to infinity. 

 



Noise Transfer Function 3-order PLL 

Low Pass Transfer-Function from input to Output 

HLow −Pass  =
NKvcoIcp

2π
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1 + RzCzCps
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High Pass Transfer Function from VCO output to Output 

HHigh −Pass  =N�
RzCzCps3 + (Cz + Cp)s2

NRzCzCps3 + N(Cz + Cp)s2 + KvcoIcp
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Band Pass Transfer Function from VCO input to Output 
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Crystal Noise 
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VCO output Noise 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉,𝑉𝑉𝑉𝑉𝑉𝑉
2 = �𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑙𝑙𝑇𝑇𝑇𝑇𝑇𝑇 �

2𝑉𝑉𝑇𝑇 ,𝑣𝑣𝑇𝑇𝑉𝑉 _𝑉𝑉𝑉𝑉𝑉𝑉
2  

 Resistor Noise in Loop Filter 
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Figure 7 shows the noise transfer fuctions from the input phase to the output phase,the noise transfer 
fucntions from VCO input to output, and clock buffer noise. 

 

Figure 7 Noise Transfer Functions  

Jitter Estimation by applying Effective 2nd

Although a complete 3rd-order model of a PLL is needed to understand the jitter contribution of 
different loop parameters, it will be analysis by 2

-order Model to Any PLL[1] 

nd

 

-order PLL model for simplification. In addition, the 
reference mention that analytical results and measurements have found that tracking jitter due to VCO 
noise for a particular design can be easily estimated by simply using the second-order equations.  

The critical parameters that determine the jitter are the f-3dB and the peaking in the NTF. 
In a higher-order loop, the parameters such as ζ and fn cannot be directly applied to the equations for 
the second-order loop because the resulting frequency response can differ greatly. To still use the 
equation, for a given frequency response, we find an effective fn and effective ζ that result in the same 
bandwidth and peaking. 
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The NTFs for VCO output (clock buffer noise) is high-pass filters while the NTF for input clock noise is a 
low-pass filter. In addition, the NTFs for VCO input is band-pass filters. Multiplying each noise source’s 
NTF with the transfer function of the correspondent block provides the overall transfer function from 
any voltage (or current) noise to the PLL output: 
 
5. Simulation Result 
 
A. Relationship Between Output Jitter and Input Clock Noise 
 

 
Figure 8 input referred NTF of 3rd order and 2rd order PLL 

 
First find an effiective wn and effective damping factor that result in the same bandwidth and peaking. 
Wn = 2.3e6 rad/s and Damping factor = 0.5 were found by optimization based on Figure 8. It shows the 
peaking and bandwidth matches.  There are two kinds noise source for wite noise and 1/f^2 noise 
source. 

2rd Order NTF for input noise 

2

2 2

2
2

, ,  K / (2 )
2

n n
Lowpass div

n n

Loop
n n loop PFD VCO CP

sH N
s s

K RzCz and K K I Cz
N

ξω ω
ξω ω

ω ξ ω π

 +
=  + + 

= = =

 

 

 

10
4

10
5

10
6

10
7

10
8

10
9

-80

-60

-40

-20

0

20

40

60
Low Pass Transfer Function (for Reference Noise)

frequency (Hz)

G
ai

n 
(d

B
)

 

 

3rd Order PLL
2rd Order PLL



White Noise Assumption : 𝑆𝑆𝜙𝜙𝑇𝑇𝐻𝐻𝑇𝑇 (𝑓𝑓) = 𝑁𝑁𝑇𝑇𝑐𝑐𝑐𝑐−𝐻𝐻𝑇𝑇  
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2 ∗ 𝑁𝑁𝑑𝑑𝐻𝐻𝑣𝑣 

Ndiv=480, Fout=2.4GHz, and Nclk_in = 1e-6 

RMS jitter = 311ns for infinite cycles by white noise 

 

1/f^2 Noise Assumption : Sϕnin (f) = Nclk −in
f2  

Timing Jitter conversion ( This example Damping factor less than 1 ) 
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Delta T = 10000*1/2.4GHz 

Nclk_in = 1e-6 

Timing Jitter  RMS = 0.2ps 

 

 

 

 

 

 



B. Relationship Between Output Jitter and VCO Noise 

 

First find an effiective wn and effective damping factor that result in the same bandwidth and peaking. 
Wn = 2.3e6 rad/s and Damping factor = 0.5                                                                                                          
VCO  input noise NTF for 2-rd order PLL                                                                                                                                               
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For 10000 cycles 

NVCO = 1e-3 

Timing Jitter  RMS = 8.7e-15s 
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C. Relationship Between Output Jitter and Clock Buffer Noise (VCO output noise) 

 

First find an effiective wn and effective damping factor that result in the same bandwidth and peaking. 

Wn = 2.8e6 rad/s and Damping factor = 0.44                                                                                                       
For the clock buffer noise or VCO output noise NTF 2rd order PLL  
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This problem you are ingnore the clock buffer, therefore wbuf = 0 and Nbuf means VCO ouput noise.  
Timing jitter equation 
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For 10000 cycles 

NBuffer (VCO output noise )  = 1e-6 

Timing Jitter  RMS = 55ps 
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Appendix 

% ---------------------------------------------------------------------- 
% *********************INITIAL SETUP*********************  
  
clear all; 
format long; 
  
% ---------------------------------------------------------------------- 
% *********************PLL PARAMETERS*********************  
f = linspace (10000, 1e9, 20000); 
w = 2*pi*f; 
% Input Clock Frequency 
FIN = 5e6; 
fs = 1/10e-12; 
  
% Charge Pump parametere 
ICP = 100e-6; 
err_1 = 0; 
err_2 = 0; 
SR = 10e9; %Slew Rate is 1V in 100ps 
  
% Loop Filter parameters 
Rz = 15e3; 
Cz = 42e-12; 
Cp = 5.3e-12; 
  
  
% KVCO parameters.  
Kv = 1e9; %In Hz/V for simulink 
KVCO = 1e9*2*pi; %In rad/V 
KvcoOffset = 0; 
Fo = 2.3e9; 
  
  
% Divider Parameters 
N = 480; 
  
% ---------------------------------------------------------------------- 
% *********************START SIMULATION*********************  
  
options=simset('MaxStep',1/fs,... 
    'RelTol',3e-3/fs,'AbsTol',1e-4/fs, ... 
    'Solver','ode45',... 
    'ZeroCross','on' ); 
  
sim('PLL_ab',[0 5e-6], options) 
  



% ---------------------------------------------------------------------- 
% *********************POST PROCESSING*********************  
  
        Kpd = ICP/(2*pi); 
        Kfwd = Kpd*KVCO; 
        Kloop = Kfwd/N ; 
        a1 = Rz*Cz; 
        b21 = Rz*Cz*Cp; 
        b22 = (Cp+Cz); 
        
        Aopenloop_num = Kloop*[a1 1]; 
        Aopenloop_den = [b21 b22 0 0]; 
        Aopenloop = freqs(Aopenloop_num,Aopenloop_den,w); 
        Gain_Open_Loop = db(abs(Aopenloop));     
        Phase_Open_Loop = (180/pi)*angle(Aopenloop); 
        
        Zero = abs(roots(Aopenloop_num)/(2*pi)); 
        Pole = abs(roots(Aopenloop_den)/(2*pi)); 
        BW = Kpd*KVCO*Rz/N*(Cz/(Cz+Cp))/(2*pi); 
        DF = Rz/2*(Kpd*KVCO*Cz/N)^(1/2); 
                
        [y x1] = min(abs(Gain_Open_Loop)); 
        Unity_Gain_Frequency = f(x1); 
        Phase_Margin = Phase_Open_Loop(x1) + 180; 
        Natural_freq = Unity_Gain_Frequency/(2*DF);       
         figure(1) 
         subplot(2,1,1) 
         semilogx(f,Gain_Open_Loop,'Color','b','LineWidth',2); 
         title('The Gain Plot of the Open Loop Transfer Function'); 
         xlabel('frequency (Hz)'); 
         ylabel('Gain (dB)'); 
         grid on; 
          
         subplot(2,1,2) 
         semilogx(f,Phase_Open_Loop,'Color','b','LineWidth',2); 
         title('The Phase Plot of the Open Loop Transfer Function'); 
         xlabel('frequency (Hz)'); 
         ylabel('Phase (degrees)'); 
         grid on; 
          
 % Closed Loop Analysis of the VCO (Low Pass Transfer Function) 
       
        Alowpass_num = Kfwd*N*[a1 1]; 
        Alowpass_den = [N*b21 N*b22 a1*Kfwd Kfwd]; 
        Alowpass = freqs(Alowpass_num,Alowpass_den,w); 
        Gain_Low_Pass = db(abs(Alowpass));         
            
% Closed Loop Analysis of the VCO (High Pass Transfer Function from the VCO 
% input to the output) 
  
        Ahighpass_num = (N)*[b21 b22 0 0]; 
        Ahighpass_den = [N*b21 N*b22 a1*Kfwd Kfwd]; 
        Ahighpass = freqs(Ahighpass_num,Ahighpass_den,w); 
        Gain_High_Pass = db(abs(Ahighpass));    



         
% Closed Loop Analysis of the VCO (Band Pass Transfer Function from the VCO 
% output to the output) 
  
        Abandpass_num =  N*KVCO*[b21 b22 0]; 
        Abandpass_den = [N*b21 N*b22 a1*Kfwd Kfwd]; 
        Abandpass = freqs(Abandpass_num,Abandpass_den,w); 
        Gain_Band_Pass = db(abs(Abandpass));         
         
         figure 
         subplot(3,1,1) 
         semilogx(f,Gain_Low_Pass,'Color','g','LineWidth',2 ); 
         Title('Low Pass Transfer Function (for Reference Noise)'); 
         xlabel('frequency (Hz)'); 
         ylabel('Gain (dB)'); 
         grid on; 
%          
         subplot(3,1,2) 
         semilogx(f,Gain_High_Pass,'Color','r','LineWidth',2); 
         Title('High Pass Transfer Function (for CLK Buffer Noise)'); 
         xlabel('frequency (Hz)'); 
         ylabel('Gain (dB)'); 
         grid on; 
          
         subplot(3,1,3)  
         semilogx(f,Gain_Band_Pass,'Color','b','LineWidth',2); 
         Title('Band Pass Transfer Function (for VCO input Noise)'); 
         xlabel('frequency (Hz)'); 
         ylabel('Gain (dB)'); 
         grid on; 
          
%figure; 
  
%semilogx(f,Gain_Low_Pass,'Color','g','LineWidth',2); 
%hold on; grid on; 
%semilogx(f,Gain_High_Pass,'Color','r','LineWidth',2); 
%hold on; grid on; 
%semilogx(f,Gain_Band_Pass,'Color','b','LineWidth',2); 
%legend ('Gain Low Pass','Gain High Pass','Gain Band Pass',4); 
%Title('Noise Transfer function, N=480' ); 
%         xlabel('frequency (Hz)'); 
%         ylabel('Noise Transfer function (dB)'); 
%         grid on; 
  
  
wz = 2*pi*Zero ; 
wp = 2*pi*max(Pole) ; 
wn = 2*pi*Natural_freq ; 
wd = wn*(1-DF^2)^0.5; 
  
% figure; 
% s = tf('s') ; 
% HO = wn^2 * (1 + s/wz) / (s^2 * (1 + s/wp)) ; 
% bode(HO) ; 



% HC = wn^2 * (1 + s/wz) / (s^2 + ((wn^2)/wz)*s + wn^2) ; 
% ltiview(HC) ; 
  
%Jitter due to input ref Noise in an Ideal Second-Order PLL 
  
  
        figure; 
        semilogx(f,Gain_Low_Pass,'Color','b','LineWidth',2 ); 
         Title('Low Pass Transfer Function (for Reference Noise)'); 
         xlabel('frequency (Hz)'); 
         ylabel('Gain (dB)'); 
         hold on; 
         grid on; 
  
         wn_l = 2.3e6; 
         df_l = 0.5; 
         wd_l = wn_l*(1-df_l^2)^0.5; 
         Num_l = N*[2*df_l*wn_l wn_l^2]; 
         den_l = [1 2*df_l*wn_l wn_l^2]; 
         NTF_LP=freqs(Num_l,den_l,w); 
         Gain_LP=db(abs(NTF_LP)); 
         semilogx(f,Gain_LP,'Color','r','LineWidth',2); 
         legend ('3rd Order PLL','2rd Order PLL',3);  
  
fout = 2.4e9; 
wout = 2*pi*fout; 
cycles = 10000; 
T = 1/fout; 
d_T = cycles*T; 
Nclk_in = 1e-6; 
k_l = (4*pi^2*Nclk_in*N/(wout)^2)^0.5; 
  
% Jitter due by 1/f^2 noise 
RMS_jitter_ref2 = (k_l^2*d_T*(1+1/(2*df_l*wn_l*d_T)+exp(-
df_l*wn_l*d_T)/d_T*(sin(wd_l*d_T+pi/6)/(2*(1-df_l^2)*wn_l)-
cos(wd_l*d_T)/(2*(1-df_l^2)*df_l*wn_l)-2*sin(wd_l*d_T)/wd_l)))^0.5 
  
% Jitter due by white noise and T => 00 
RMS_jitter_ref=(N*2/(wout)^2*Nclk_in*(wn_l*(4*df_l^2+1)/(4*df_l)))^0.5 
  
  
  
%Jitter due to VCO Input Noise in an Ideal Second-Order PLL 
  
figure; 
semilogx(f,Gain_Band_Pass,'Color','b','LineWidth',2); 
         Title('Band Pass Transfer Function (for VCO input Noise)'); 
         xlabel('frequency (Hz)'); 
         ylabel('Gain (dB)'); 
         Hold on; 
         grid on; 
  
          



         wn_s = 2.3e6; 
         df_s = 0.5; 
         wd_s = wn_s*(1-df_s^2)^0.5; 
         Num = [KVCO 0]; 
         den = [1 2*df_s*wn_s wn_s^2]; 
         second_band=freqs(Num,den,w); 
         Gain_second_band=db(abs(second_band)); 
         semilogx(f,Gain_second_band, 'Color','r','LineWidth',2); 
         legend ('3rd Order PLL','2rd Order PLL',3);  
  
  
NVCO=1e-3; 
k = (4*pi^2*NVCO/(wout)^2)^0.5; 
Jitter_VCO=(k^2*(1/(2*df_s*wn_s)+(exp(-df_s*wn_s*d_T)/(2*(1-
df_s^2)))*(sin(wd_s*d_T+pi/2)/wn_s-cos(wd_s*d_T)/(df_s*wn_s))))^(1/2) 
  
%Jitter due to VCOoutput(CLK Buff) Noise in an Ideal Second-Order PLL 
  
figure;  
semilogx(f,Gain_High_Pass,'Color','b','LineWidth',2); 
         Title('High Pass Transfer Function (for CLK Buffer Noise)'); 
         xlabel('frequency (Hz)'); 
         ylabel('Gain (dB)'); 
         Hold on; 
         grid on; 
  
         wn_b = 2.8e6; 
         df_b = 0.44; 
         wd_b = wn_b*(1-df_b^2)^0.5; 
         Num_b = [1 0 0]; 
         den_b = [1 2*df_b*wn_b wn_b^2]; 
         second_high=freqs(Num_b,den_b,w); 
         Gain_second_high=db(abs(second_high)); 
         semilogx(f,Gain_second_high, 'Color','r','LineWidth',2); 
         legend ('3rd Order PLL','2rd Order PLL',4);  
wbuf = 0; 
Nbuf = 1e-6; 
Jitter_Buff=(Nbuf/wout^2*(wbuf+wn_b*(1-12*df_b^2)/(2*df_b)-exp(-
wbuf*d_T)*(wbuf-4*df_b*wn_b)-exp(-df_b*wn_b*d_T)*(-
wn_b*sin(wd_b*d_T+3*pi/6.9-pi)/(2*(1-df_b^2))+wn_b*cos(wd_b*d_T)/(2*(1-
df_b^2)*df_b)-2*wn_b*sin(wd_b*d_T+2*pi/6.9)/((1-df_b^2)^0.5))))^0.5 
  
  
  
  
  
  
  
 
 

 


