12Gb/s Duobinary Signaling with x2 Oversampled Edge Equalization

Kōichi Yamaguchi, Kazuhisa Sunaga, Shun’ichi Kaeriyama, Taka’aki Nedachi, Makoto Takamiya, Koichi Nose, Yoshihiro Nakagawa, Mitsutoshi Sugawara†, Muneo Fukaishi

NEC Corporation
† NEC Electronics America
Outline

• Background
• Concept
• Developed techniques
• Results of experiments
• Conclusions
• Increasing demands for high I/O bandwidth
• I/O bandwidth is limited by channel distortion
 – Intersymbol Interference (ISI), crosstalk/reflection
• Channel equalization is a key technique
 – Nyquist (zero-ISI) signaling in PAM-2, PAM-4
PAM-2 Nyquist Signaling

Key Points:
- Channel loss produces ISI: $1 + a_1z^{-1} + a_2z^{-2} + a_3z^{-3} + \ldots$
- Nyquist-freq. bandwidth, zero ISI ($a_k = 0$)

Cons: High Nyquist rate leads to lower eye height

Lower-Nyquist-freq. signaling is required
PAM-4 Nyquist Signaling

Transfer function

- **Gain**
- **Freq.**
- **w/ Channel loss**
 - (non-zero ISI)
- **Equalized**
 - (zero ISI)

Single bit response

- **Time**
- **10**
- **11**
- **01**
- **00**

- **00**
- **01**
- **11**
- **10**

- **4-level**
 - (3, 1, -1, -3)

- **TX**
- **EQ**

- **Channel**

- **RX**
- **EQ**

- **4-level**
 - (3, 1, -1, -3)

Pros:
- $f_{\text{nyq}} = 1/2$ of PAM-2 Nyquist-freq., zero-ISI

Cons:
- Different symbol rate from PAM-2
- 9-dB-larger crosstalk sensitivity
- $1/3$ eye height of maximum transition

PAM-4 coding halves symbol rate
Duobinary Signaling

Transfer function

w/ Channel loss (non-zero ISI)

Equalized $(1+z^{-1})$

Gain \rightarrow

Freq. \rightarrow

Time \rightarrow

$[U.I.]$

Binary $(1, -1)$

TX EQ \rightarrow

Channel \rightarrow

RX EQ \rightarrow

Duobinary $(2, 0, -2)$

• Duobinary allows controlled amount of ISI: $1+z^{-1}$

Cons: 3 level output: $1+(-1) / -1+(1)=0$, $1+(1)=2$, $-1+(-1)=-2$

Pros: f_{nyq} = 2/3 of PAM-2 Nyquist-freq. = 4/3 of PAM-4 Nyquist-freq.

Same symbol rate as PAM-2

Previous data
Duobinary Signaling (cont.)

Pros: No enhanced crosstalk sensitivity
- Duobinary signal includes only adjacent transitions

- Duobinary interference \((1+z^{-1})\) is removed by precoder in advance
 - Precoder encodes tx data according to \(1/(1+z^{-1})\)
 - No error propagation
 - Binary data is recovered at sampling instant
Eye Height Comparison with PAM-2

- If gain difference is larger than 3.7dB, \(E_{duo} > E_{pam-2} \)

\[f_{pam-2}: \text{Nyquist freq. of PAM-2} \]
\[f_{duo}: \text{Nyquist freq. of Duobinary, } 2/3 \times f_{pam-2} \]
If gain difference is less than 5.8dB, \(E_{\text{duo}} > E_{\text{pam-4}} \)
Eye Height Comparison

Data rate: 12Gb/s, Media: low-ε PCB

- Duobinary signaling over 75-cm trace
 - 3.8-dB larger than PAM-2
 - 2.1-dB larger than PAM-4
Development Problems

1. How can signals be equalized into duobinary?
 - X2 oversampled equalization

2. How can clock signals be recovered from duobinary signals?
 - 2bit-transition-ensured coding

3. How can equalization be optimized?
 - Edge equalization

![Diagram](image-url)
Development Problems

1. How can signals be equalized into duobinary?
 - X2 oversampled equalization

2. How can clock signals be recovered from duobinary signals?
 - 2bit-transition-ensured coding

3. How can equalization be optimized?
 - Edge equalization

![Diagram showing the process of signal equalization, transmission, and clock recovery.](image-url)
How to Equalize Duobinary Signals?

Conventional symbol-rate equalization in duobinary

- Cannot cancel Nyquist-frequency phase delay
- Reduces timing margin
Duobinary Equalization

- **Nyquist interval**, $1/(2f_{nyq})$
 - PAM-2/4: 1.0 U.I.
 - Duobinary: 1.5 U.I.

- **Equalization**
 - PAM-2/4: Symbol-rate
 - Duobinary: Fractional-rate

- **X2 oversampled equalizer**
 - Multi-phase clock approach

least transition time in signaling
• **Multi-phase clock approach**
 - 12Gb/s signaling by using 3GHz 8phase clock
 - 45 degrees corresponds to 0.5 U.I.
5-tap Symbol-rate Equalizer

- 5-tap controller produces delayed data for each tap
- 4:1MUX by using 4-phase clock
- CML output buffer with variable amplitude
Development Problems

1. How can signals be equalized into duobinary?
 - X2 oversampled equalization

2. How can clock signals be recovered from duobinary signals?
 - 2bit-transition-ensured coding

3. How can equalization be optimized?
 - Edge equalization

Data ➔ Tx Equalize ➔ Channel ➔ Duobinary signal ➔ Clock Recovery

- Tap weights
- Equalize Control
How to Recover Clock from Duobinary?

- **Oversampling clock recovery**
 - High speed operation
 - PAM-2 compatibility

- **Stable sampling at timing ϕ_c is required**
 - 1-bit transition (2002 / -200-2): NG,
 - 2-bit transition (20-2 / -202): has to be ensured

(a) 1-bit transition

(b) 2-bit transition
Ensuring 2-bit Transition

2-bit transition is ensured by using simple encoding

<table>
<thead>
<tr>
<th>LSB[1:0]</th>
<th>Encoded (A)</th>
<th>Precoded (B)</th>
<th>Rx input (C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1-1</td>
<td>-1-1 1-1</td>
<td>(-1)-1-111 / (1)11-1-1</td>
<td>-2-202 / 220-2</td>
</tr>
<tr>
<td>-1 1</td>
<td>-1 1-1 1</td>
<td>(-1)-111-1 / (1)1-1-11</td>
<td>-2020 / 20-20</td>
</tr>
<tr>
<td>1-1</td>
<td>1-1 1-1</td>
<td>(-1)11-1-1 / (1)-1-111</td>
<td>020-2 / 0-202</td>
</tr>
<tr>
<td>1 1</td>
<td>-1 1-1-1</td>
<td>(-1)-1111 / (1)1-1-1-1</td>
<td>-2022 / 20-2-2</td>
</tr>
</tbody>
</table>

Coding example:

Half-rate transition

Data input (1, -1)

2-bit transition ensuring encoder
Clock Recovery in Duobinary Signaling

- Phase-interpolator-based clock recovery is adopted
- Duobinary signal is sampled at ϕ_d and ϕ_c
Development Problems

1. How can signals be equalized into duobinary?
 - X2 oversampled equalization

2. How can clock signals be recovered from Duobinary signals?
 - 2bit-transition-ensured coding

3. How can equalization be optimized?
 - Edge equalization
How to Optimize Equalization?

• Equalization error information is required
 – Level comparator
 – Reference voltage (expected amplitude)

• PAM-2
 – 1 reference voltage
 – 1 comparator

• Duobinary
 – 3-leveled signal

• Edge equalization

![PAM-2 unequalized eye](image)
Edge Equalization

(a) Optimum equalization

Non-optimum equalization

Superposition of single bit responses

Sampled edge

• Non-optimum eq. produces non-zero sampled edge
• Sampled edge can be used as error signal
Edge Equalization (cont.)

- Sampled edge can be obtained from CR front-end
 - No additional component
- Successful optimization by edge equalization
Duobinary Signaling System

- Moderate design complexity against PAM-2
 - Equalizer, Precoder, and Data decision circuit
 - Test chip includes transmitter and clock recovery
• Features
 – 90nm CMOS 6 Metal Layer, Vdd: 1.0V
 – TX: 133 mW, 0.18mm²
 – RX: 97 mW, 0.055mm²
· 12Gb/s signaling over 75-cm low-\(\epsilon\) PCB
 - 49mV x 35ps (PAM-2), 73.5mV x 52ps (Duobinary)
 - Duobinary eye height/width: 3.5 dB/1.5 times larger
Eye Diagrams (cont.)

- 12Gb/s signaling over 50-cm low-ε PCB
- Duobinary and PAM-2 have comparable eye openings

- 12Gb/s signaling over 25-cm low-ε PCB
- PAM-2 has larger eye opening than duobinary
Conclusions

• Duobinary signaling
 – Allows controlled amount of ISI to reduce signaling bandwidth
 – Better compatibility to PAM-2
 – Better crosstalk/reflection immunity

• Developed techniques
 – X2 oversampled equalization
 – 2bit-transition-ensured coding
 – Edge equalization

• Measured results
 – Fabricated with 90nm CMOS
 – 3.5dB x 1.5 times larger eye-opening than PAM-2