ECEN620: Network Theory Broadband Circuit Design Fall 2023

Lecture 15: High-Speed Wireline Transmitters

Sam Palermo Analog & Mixed-Signal Center Texas A&M University

Announcements

- Exam 2 Thursday Nov 30
 - One double-sided 8.5x11 notes page allowed
 - Bring your calculator
 - Covers through Lecture 14
- Project Final Report due Dec 4

Agenda

- Common wireline modulation schemes
- Electrical transmitters
- Electrical channel issues & optical link motivation
- Optical channels & modulation techniques
- Optical transmitter circuits
 - Vertical-cavity surface-emitting laser (VCSEL)
 - Mach-Zehnder modulator (MZM)
 - Electro-absorption modulator (EAM)
 - Ring-resonator modulator (RRM)
- Conclusion

High-Speed Serial I/O

- Found in applications ranging from high-end computing systems to smart mobile devices
- Typical processor platform
 - Processor-to-memory: DDR4
 - Processor-to-peripheral: PCIe & USB
 - Storage: SATA
 - Network: LAN
- Mobile systems
 - DSI : Display Serial Interface
 - CSI : Camera Serial Interface
 - UniPRO : MIPI Universal Protocol

High-Speed Electrical Link System

PAM-2 (NRZ) vs PAM-4 Modulation

- Binary, NRZ, PAM-2
 - Simplest, most common modulation format
- PAM-4
 - Transmit 2 bits/symbol
 - Less channel equalization and circuits run 1/2 speed

Modulation Frequency Spectrum

Nyquist Frequency

- Nyquist bandwidth constraint:
 - The theoretical minimum required system bandwidth to detect $\rm R_S$ (symbols/s) without ISI is $\rm R_S/2$ (Hz)
 - Thus, a system with bandwidth $W=1/2T=R_S/2$ (Hz) can support a maximum transmission rate of $2W=1/T=R_S$ (symbols/s) without ISI

$$\frac{1}{2T} = \frac{R_s}{2} \le W \Longrightarrow \frac{R_s}{W} \le 2 \quad \text{(symbols/s/Hz)}$$

• For ideal Nyquist pulses (sinc), the required bandwidth is only $R_S/2$ to support an R_S symbol rate

Modulation	Bits/Symbol	Nyquist Frequency
NRZ	1	$R_s/2=1/2T_b$
PAM-4	2	$R_s/2=1/4T_b$

NRZ vs PAM-4

- PAM-4 should be considered when
 - Slope of channel insertion loss (S_{21}) exceeds reduction in PAM-4 eye height
 - Insertion loss over an octave is greater than 20*log10(1/3)=-9.54dB
 - On-chip clock speed limitations

NRZ vs PAM-4 – Desktop Channel

- Eyes are produced with 4-tap TX FIR equalization
- Loss in the octave between 2.5 and 5GHz is only 2.7dB
 - NRZ has better voltage margin

NRZ vs PAM-4 – T20 Server Channel

- Eyes are produced with 4-tap TX FIR equalization
- Loss in the octave between 2.5 and 5GHz is 15.8dB
 - PAM-4 "might" be a better choice

Agenda

- Common wireline modulation schemes
- Electrical transmitters
- Electrical channel issues & optical link motivation
- Optical channels & modulation techniques
- Optical transmitter circuits
 - Vertical-cavity surface-emitting laser (VCSEL)
 - Mach-Zehnder modulator (MZM)
 - Electro-absorption modulator (EAM)
 - Ring-resonator modulator (RRM)
- Conclusion

Differential Signaling

- A difference between voltage or current is sent between two lines
- Requires 2x signal lines relative to single-ended signaling, but less return pins
- Advantages
 - Signal is self-referenced
 - Can achieve twice the signal swing
 - Rejects common-mode noise
 - Return current is ideally only DC

Current vs Voltage-Mode Driver

- Signal integrity considerations (min. reflections) requires 50Ω driver output impedance
- To produce an output drive voltage
 - Current-mode drivers use Norton-equivalent parallel termination
 - Easier to control output impedance
 - Voltage-mode drivers use Thevenin-equivalent series termination
 - Potentially $\frac{1}{2}$ to $\frac{1}{4}$ the current for a given output swing

Push-Pull Current-Mode Driver

- Used in Low-Voltage Differential Signals (LVDS) standard
- Driver current is ideally constant, resulting in low dI/dt noise
- Dual current sources allow for good PSRR, but headroom can be a problem in low-voltage technologies
- Differential peak-to-peak RX swing is ±IR with double termination

Current-Mode Logic (CML) Driver

- Used in most high performance serial links
- Low voltage operation relative to push-pull driver
 - High output common-mode keeps current source saturated
- Can use DC or AC coupling
 - AC coupling requires data coding
- Differential pp RX swing is \pm IR/2 with double termination

Current-Mode Current Levels

 $V_{d,1} = (I/2)R$ $V_{d,0} = -(I/2)R$ $V_{d,pp} = IR$ $I = rac{V_{d,pp}}{R}$

 $V_{d,1} = (I/4)(2R)$ $V_{d,0} = -(I/4)(2R)$ $V_{d,pp} = IR$ $I = \frac{V_{d,pp}}{R}$

Voltage-Mode Current Levels

Single-Ended Termination

 $V_{d,1} = (V_s/2)$ $V_{d,1} = -(V_s/2)$ $V_{d,pp} = V_s$ $I = \left(V_{s} / 2R \right)$ $I = \frac{V_{d,pp}}{V_{d,pp}}$ 2R

Differential Termination

 $V_{d,1} = (V_s/2)$ $V_{d,1} = -(V_s/2)$ $V_{d,pp} = V_s$ $I = (V_{s}/4R)$ $I = \frac{V_{d,pp}}{V_{d,pp}}$

Current-Mode vs Voltage-Mode Summary

Driver/Termination	Current Level	Normalized Current Level
Current-Mode/SE	$V_{d,pp}/Z_0$	1x
Current-Mode/Diff	$V_{d,pp}/Z_0$	1x
Voltage-Mode/SE	$V_{d,pp}/2Z_0$	0.5x
Voltage-Mode/Diff	$V_{d,pp}/4Z_0$	0.25x

- An ideal voltage-mode driver with differential RX termination enables a *potential* 4x reduction in driver power
- Actual driver power levels also depend on
 - Output impedance control
 - Pre-driver power
 - Equalization implementation

Global Resistor Calibration

- Off-chip precision resistor is used as reference
- On-chip termination is varied until voltages are within an LSB
 - Dither filter typically used to avoid voltage noise
- In current-mode drivers, this code is used for the nominal load setting

Low-Swing Voltage-Mode Drivers

- Voltage-mode driver implementation depends on output swing requirements
- For low-swing (<400-500mVpp), an all NMOS driver is suitable

High-Swing Voltage-Mode Drivers

- Voltage-mode driver implementation depends on output swing requirements
- For high-swing, CMOS driver is used

Low-Swing VM Driver Impedance Control

- A linear regulator sets the output stage supply, V_s
- Termination is implemented by output NMOS transistors
- To compensate for PVT and varying output swing levels, the pre-drive supply is adjusted with a feedback loop
- The top and bottom output stage transistors need to be sized differently, as they see a different V_{OD}

4:1 Output Multiplexing Voltage-Mode TX

- Impedance control is achieved independent of the pre-driver supply by adding additional up/down analogcontrolled NMOS transistors
- Level-shifting pre-driver allows for smaller output transistors

Y.-H. Song, R. Bai, P. Chiang, and S. Palermo, "A 0.47-0.66pJ/bit, 4.8-8Gb/s I/O Transceiver in 65nm-CMOS," IEEE JSSC, vol. 48, no. 5, pp. 1276-1289, May 2013.

Low-Swing Voltage-Mode Driver Analog Impedance Control

 Replica global impedance control loop provides analog gate voltages to the additional top/bottom transistors to set the pull-up/down impedance

Y.-H. Song, R. Bai, P. Chiang, and S. Palermo, "A 0.47-0.66pJ/bit, 4.8-8Gb/s I/O Transceiver in 65nm-CMOS," IEEE JSSC, vol. 48, no. 5, pp. 1276-1289, May 2013.

High-Swing Voltage-Mode Driver Impedance Control

- Passive resistors + transistors' triode resistance
- Output impedance will change due to process variation
- Causes reflection and level mismatch

High-Swing Voltage-Mode Driver Impedance Control

- Equalization control by setting the number of segments connected to each tap
- Termination control by setting the total number of enabled segments
- Disadvantages:
 - Transistor stacking in full-rate path
 - Extra area due to redundant segments
 - Extra power consumption because pre-driver should be sized to drive maximum load
 - Sensitive to P/N skew variations

High-Swing Voltage-Mode Driver Hybrid Impedance Control Scheme

- Programmable number of driver slices provides coarse impedance control to compensate for resistor variations
- Analog impedance loop provides fine impedance control to compensate for NMOS/PMOS variations
- Measured differential mode return loss meets key protocols composite return loss mask

Current-Mode Driver Example

Voltage-Mode Driver Example

Agenda

- Common wireline modulation schemes
- Electrical transmitters
- Electrical channel issues & optical link motivation
- Optical channels & modulation techniques
- Optical transmitter circuits
 - Vertical-cavity surface-emitting laser (VCSEL)
 - Mach-Zehnder modulator (MZM)
 - Electro-absorption modulator (EAM)
 - Ring-resonator modulator (RRM)
- Conclusion

High-Speed Electrical Link System

Electrical Backplane Channel

- Frequency dependent loss
 - Dispersion & reflections
- Co-channel interference
 - Far-end (FEXT) & near-end (NEXT) crosstalk

Channel Performance Impact

 (\mathbf{V})

Θ

Voltag

Link with Equalization

 A progressive combination of TX-side Finite-Impulse Response (FIR) filtering and RX-side Continuous-Time Linear Equalizers (CTLE) and Decision-Feedback Equalizers (DFE) is often employed to mitigate channel ISI

Channel Performance Impact

 (\mathbf{V})

Θ

Voltag

High-Speed Optical Link System

- Optical interconnects remove many channel limitations
 - Allows for dramatically longer reach
 - Potential for high information density with wavelength-division multiplexing (WDM)

Data Center Links

- Different interconnect technologies are used to span various distances
- Electrical I/O
 - Chip-to-module
 - Intra-rack (DAC cables)
- Optical I/O
 - Intra-rack (AO cables)
 - TOR switch to edge switch

Data Center Link Length

Maximum reach scales inversely with data rate

Wavelength-Division Multiplexing (WDM)

 WDM allows for multiple high-bandwidth (10+Gb/s) signals to be packed onto one optical channel

Agenda

- Common wireline modulation schemes
- Electrical transmitters
- Electrical channel issues & optical link motivation
- Optical channels & modulation techniques
- Optical transmitter circuits
 - Vertical-cavity surface-emitting laser (VCSEL)
 - Mach-Zehnder modulator (MZM)
 - Electro-absorption modulator (EAM)
 - Ring-resonator modulator (RRM)
- Conclusion

Optical Channels

- Short distance optical I/O channels are typically either waveguide (fiber)-based or free-space
- Optical channel advantages
 - Much lower loss
 - Lower cross-talk
 - Smaller waveguides relative to electrical traces
 - Potential for multiple data channels on single fiber via WDM

Optical Fiber Cross-Section

 Optical fibers confine light between a higher index core and a lower index cladding via total internal reflection

Silica Glass Fiber Loss

- Scattering, absorption by material impurities, and other effects cause loss as the signal propagates down the fiber
- Optical fiber loss is specified in dB/km
 - Single-Mode Fiber loss ~0.25dB/km at 1550nm
 - RF coaxial cable loss ~500dB/km at 10GHz

Fiber Bandwidth and Dispersion

- While optical fiber has very wide bandwidth over which there is very low loss, there are still limits to high-speed communication
- Optical fiber can disperse a broadband signal, as different spectral components travel at different speeds
- This is Chromatic Dispersion

[Sackinger]

Two Fiber Bandwidths

- Optical Carrier Bandwidth
 - Assuming a spectrally-pure signal, this is large (11THz near 1550nm)
- Modulated Signal Bandwidth
 - This is often limited by chromatic dispersion
 - 1km of standard SMF is a few 10GHz with a laser linewidth of 1nm
- WDM can take advantage of the width carrier bandwidth with multiple carriers modulated at ~10Gb/s to achieve overall Tb/s communication

[Sackinger]

Optical Modulation Techniques

Two modulation techniques

- Direct modulation of laser
- External modulation of continuous-wave (CW) "DC" laser with absorptive or refractive modulators

Directly Modulated Laser

- Directly modulating laser output power
- Simplest approach
- Introduces laser "chirp", which is unwanted frequency (wavelength) modulation
- This chirp causes unwanted pulse dispersion when passed through a long fiber

Externally Modulated Laser

- External modulation of continuous-wave (CW)
 "DC" laser with absorptive or refractive modulators
 - Adds an extra component
 - Doesn't add chirp, and allows for a transform limited spectrum

Agenda

- Common wireline modulation schemes
- Electrical transmitters
- Electrical channel issues & optical link motivation
- Optical channels & modulation techniques
- Optical transmitter circuits
 - Vertical-cavity surface-emitting laser (VCSEL)
 - Mach-Zehnder modulator (MZM)
 - Electro-absorption modulator (EAM)
 - Ring-resonator modulator (RRM)
- Conclusion

What is a Laser?

- Light Amplification by Stimulated Emission of Radiation
- Light Oscillation by Stimulated Emission of Radiation
- Lasers are optical oscillators that emit coherent light through the process of stimulated emission
- 3 Elements in all lasers
 - Amplifying Medium
 - Pumping Process
 - Optical Feedback (Cavity)

Semiconductor Diode Lasers

- Can be made with simple p-n junction
- Based on transitions between bands
 - Direct bandgap materials necessary
 - Si isn't \Rightarrow GaAs, InP
- Pumped electrically with current source
- Efficient device requires confinement of both carriers and photons
 - Leads to the use of heterostructures

Edge Emitters & VCSELs

- Edge Emitters
 - Advantage
 - Historically easier to manufacture
 - Disadvantages
 - Emit light in an elliptical mode
 - Higher testing and packaging costs
- VCSELs Vertical Cavity Surface Emitting Lasers
 - Advantages
 - Can make 2-D arrays
 - Emit light in a circular output mode
 - Smaller device ⇒ Lower operating currents
 - Lower testing and packaging costs
 - Disadvantage
 - Hard to manufacture due to growth of high reflective mirrors

VCSEL Light-Current-Voltage (LIV) Curve

VCSEL Model

- Capture thermally-dependent electrical and optical dynamics
- Provide dc, small signal, and large-signal simulation capabilities

Temperature-Dependent Performance

- Optical power-current-voltage (L-I-V) response is temperaturedependent
- Bandwidth is bias and temperature dependent

Measured & Simulated 25Gb/s Eye Diagrams

T_s=23°C

Laser Drivers

- Current-mode drivers are often used due to the laser's linear L-I relationship
- In addition to the high-speed modulation current I_{mod}, laser drivers must also supply a bias current I_{bias} to ensure a minimum frequency response and/or eliminate turn-on delay

25Gb/s VCSEL Link

- Current-mode output driver
- Bandwidth extension achieved with on-die shunt-peaking termination in the output stage and with Cherry-Hooper preamplifier stage

Multiplexing FIR Output Driver

VCSEL TX Optical Testing

VCSEL 16Gb/s Optical Eye Diagrams

Equalization Performance

• Maximum data rate vs Average current

- Min 80% eye opening & <40% overshoot
- Equalization allows lower average current for a given data rate
- Linear equalizer limited by VCSEL nonlinearity

PAM2 VCSEL Driver w/ 2-Tap Nonlinear FFE

Fig. 2. VCSEL pulse responses for (a) high and (b) low IVCSEL.

- VCSEL's bias-dependent frequency response results in nonlinear transient pulse responses
- A 2-tap non-linear equalizer with different equalization taps for high and low pulses provides performance improvement

Fig. 8 Measured optical eye-diagram for PRBS-15 data at 20Gb/s. (a) Unequalized (b) Equalized.

PAM4 VCSEL Driver w/ 2.5-Tap Nonlinear FFE

 A 2.5-tap nonlinear equalizer, with the first pre-cursor weight only dependent on the MSB, is a good compromise between complexity and performance

2.5-tap equalizer with the

Serializing VCSEL TX & Output Stage

- VCSEL transmitter serializes 16 bits or 8 PAM-4 symbols
- Output stage is a 5-bit non-uniform current-mode DAC
 - MSB and MSB-1 set the main PAM-4 symbol levels
 - 3 LSB currents implement the 2.5-tap equalizer with the symbol pattern selecting the weighting from the 32X3 LUT

50Gb/s PAM4 Experimental Results

[Tyagi PTL 2018]

 Core transmitter area is 0.2mm²

No Equalization

2.5-Tap Linear

2-Tap Linear

2.5-Tap Nonlinear

 2.5 tap nonlinear equalizer improves eye height and timing alignment of the 3 PAM4 eyes

Agenda

- Common wireline modulation schemes
- Electrical transmitters
- Electrical channel issues & optical link motivation
- Optical channels & modulation techniques
- Optical transmitter circuits
 - Vertical-cavity surface-emitting laser (VCSEL)
 - Mach-Zehnder modulator (MZM)
 - Electro-absorption modulator (EAM)
 - Ring-resonator modulator (RRM)
- Conclusion

Mach-Zehnder Modulator (MZM)

- An optical interferometer is formed with the incoming light split, experiencing phase shifts through the two paths, and then recombined
- Assuming no loss and a perfect 50/50 splitter/combiner

$$\Delta \phi = \frac{(\theta_R - \theta_L)}{2} \qquad \phi = \frac{(\theta_R + \theta_L)}{2}$$
Field Response Intensity Response
$$E_{out} = E_{in} \cos(\Delta \phi) e^{j\phi} \qquad P_{out} = |E_{out}|^2 = \frac{1}{2} |E_{in}|^2 [1 + \cos(\theta_R - \theta_L)]$$

$$\frac{P_{out}}{P_{in}} = \frac{1}{2} [1 + \cos(\theta_R - \theta_L)] = \frac{1}{2} \left[1 + \cos\left(\pi \cdot \frac{V_M}{V\pi}\right) \right]$$

$$69$$

Silicon Depletion-Mode MZM

- Here the silicon waveguide is doped as a PN junction
- The depletion region is modulated as a function of the applied reverse bias voltage
- The resultant change in the carrier density within the depletion region causes the refractive index to change

Traveling-Wave MZM Driver

Distributed MZM Driver

- Allows for CMOS style drivers
- Well suited for a monolithic silicon photonic process
- Hybrid integration requires may pad connections between CMOS/silicon photonic die
PAM4 Level Generation w/ MZMs

- E-DAC PAM4 TX
 - PAM4 driver bandwidth and swing limitation
 - Multi current/voltage level
- O-DAC PAM4 TX
 - Velocity mismatch between LSB and MSB
 - Multi driver design

Optical DAC NRZ/PAM4 Reconfigurable MZM TX

5 LSB segments and 9 MSB segments

56Gb/s PAM4 16nm FinFET CMOS Prototype

Waveguide Photodiode

	150uw/div 8ps/div	150uw/div 8	8ps/div	150uw/div	/ 8ps/div
	Segment setting	ER	RLM	EYE width	Eye height
(a)	3 LSB+6 MSB	6.35dB	0.942	5.12ps	11.6uW
(b)	4 LSB+7 MSB	8.14dB	0.896	5.01ps	4.6uW
(c)	4 LSB+8 MSB	8.46dB	0.944	5.7ps	18.4uW

Agenda

- Common wireline modulation schemes
- Electrical transmitters
- Electrical channel issues & optical link motivation
- Optical channels & modulation techniques
- Optical transmitter circuits
 - Vertical-cavity surface-emitting laser (VCSEL)
 - Mach-Zehnder modulator (MZM)
 - Electro-absorption modulator (EAM)
 - Ring-resonator modulator (RRM)
- Conclusion

Electroabsorption Modulator (EAM)

Waveguide EAM [Liu 2008]

[Helman JSTQE 2005]

- Electroabsorption modulators operate with voltage-dependent absorption of light passing through the device
- The device structure is a reverse-biased p-i-n diode
- The Franz-Keldysh effect describes how the effective bandgap of the semiconductor decreases with increasing electric field, shifting the absorption edge
- While this effect is weak, it can be enhanced with device structures with multiple quantum wells (MQW) through the quantum-confined Stark effect

EAM Device Types

Substrate Input In

- EAMs can be waveguide-based or surface normal
- Waveguide-based structures typically allow for higher extinction ratios due to the increased absorption length
- Surface normal devices provide the potential for large arrays of optical I/Os through bonding

Waveguide EAM [Liu 2008]

MQW EAM Array Bonded onto a CMOS Chip [Keeler 2002]

EAM Switching Curve

- At low reverse-bias, the device ideally has low absorption and most of the light appears at the output
- The absorption increases when a strong reverse-bias is applied and less power appears at the output
- EAMs are characterized with a switching voltage V_{SW} that corresponds to a given extinction ratio
- Typical switching voltages are 1.5 to 4V

EAM Equivalent Model

[Deshours JLT 2011]

Intrinsic EAM model

TABLE I EXTRACTED PARAMETERS COMPONENTS OF THE EAM EQUIVALENT CIRCUIT

Symbol	Parameter	Value
R_S	serial resistance	12 Ω
Cs	junction capacitance	90 fF
R_{f}	leakage resistance	50 kΩ
C_p	bond-pad capacitance	20 fF
L_S	parasitic metallization inductance	10 pH

$$F_{\rm NL}(V_M) = \frac{A_0 + \sum_{k=1}^{6} A_k \times V_M^k}{1 + \sum_{k=1}^{4} B_k \times V_M^k}$$

Extracted from curve fitting measurements

- Electrically, the EAM is a reverse-based diode
- This is modeled with a reverse-bias diode model and a non-linear absorption block $F_{NL}(V_M)$
- Depending on the integration level with the driver, the device may also include a termination resistor

67GHz Hybrid Silicon (InP) EAM

- EAM is formed with an InP pi-n diode bonded onto silicon
- Design for a controlledimpedance driver
- Nominal 1300nm operation with -4V bias and 2V drive achieves ~15dB ER

50Gb/s

Controlled-Impedance EAM Driver

[Vaernewyck Opt. Exp. 2013]

10Gb/s w/ 2.5V swing & -1.7V bias

- If the EAM is not tightly integrated with the driver circuitry, then a controlled-impedance driver is required
- Bias current used to set operating point
- The high EAM swings results in large power consumption

28Gb/s GeSi EAM on SOI

- EAM is formed with an GeSi p-i-n diode fabricated in an SOI platform
- Device is only 50mm long and can be driven with a lumped-element driver
- Nominal operation with 3V drive achieves 3-6dB ER over a wide wavelength range

Pulsed-Cascode Output Stage

- Uses only two-transistor stack for maximum speed
- The cascode transistors gates are pulsed during a transistion to prevent V_{DS} overstress

30Gb/s Lumped-Element EAM Driver

- Using a 5.4V reverse bias and 2Vpp dynamic swing to achieve 8dB ER
- Have ~7dB insertion loss

Agenda

- Common wireline modulation schemes
- Electrical transmitters
- Electrical channel issues & optical link motivation
- Optical channels & modulation techniques
- Optical transmitter circuits
 - Vertical-cavity surface-emitting laser (VCSEL)
 - Mach-Zehnder modulator (MZM)
 - Electro-absorption modulator (EAM)
 - Ring-resonator modulator (RRM)
- Conclusion

Ring Resonator Filter

- Ring resonators display a high-Q notch filter response at the through port and a band-pass response at the drop port
- This response repeats over a free spectral range (FSR)

Ring-Resonator Modulator (RRM)

Vormalized Transmission (dB)

-2

-6

-8

-10 -12

1313.8

Voltage

Applied

1314

 $\Delta\lambda/\Delta V = 5 \text{ pm/V}$

1314.2

Wavelength (nm)

High Frequency Modulation

- Refractive devices which modulate by changing the interference light coupled into the ring with the waveguide light
- Devices are relatively small (ring diameters $< 20\mu$ m) and can be treated as lumped capacitance loads (~ 10 fF)

No Voltage

Applied

1314.6

Laser λ

1314.4

~8 dB

1314.8

Modulation

[Young ISSCC 2009]

Wavelength Division Multiplexing w/ Ring Resonators

- Ring resonators can act as both modulators and add/drop filters to steer light to receivers or switch light to different waveguides
- Potential to pack >100 wavelengths, each modulated at more than 10Gb/s on a single on-chip waveguide

Carrier-Depletion Ring Modulator Challenge I: Output Swing & Biasing

	ISSCC 2013	This Work
Ring Type	Injection	Depletion
Doping Profile	PIN	Lateral PN
Q	8000	5000
Tunability (pm/V)	350	25
Data Rate	9Gb/s	25Gb/s
Swing for >7dB ER	< 2V _{pp}	> 4V _{pp}

- High-speed depletion-mode ring modulator requires:
 - Large swing: >4V
 - Negative DC-bias: -2V

Carrier-Depletion Ring Modulator Challenge II: Nonlinear Dynamics

- Dynamic change of $n_{eff} \rightarrow$ unequal rise/fall times
- Asymmetric equalization for non-linearity cancellation

Carrier-Depletion Ring Modulator Challenge III: Wavelength Stability

- Modulation efficiency depends strongly on wavelength
- ER degradation due to temperature fluctuation
- Closed-loop control is necessary for robust operation

AC-Coupled Differential Driver

- $C_C = 3pF \rightarrow 4.4V$ differential swing
- $Z_S < 30\Omega$ to minimize low-pass attenuation
- High-pass cut-off: < 10MHz

2-Tap FFE Output Driver

Merged Output Stage

- Merged cascode transistors
- No V_{DS} overstress
- Reduced parasitics and area
- Independent `1'-Level and `0'-Level FFE coefficients

Average Power Thermal Stabilization

Heterogeneous Integration

- Hybrid CMOS-Photonic packaging (<0.5mm bond-wires)
- Stable optical coupling using vertically-attached fibers

25Gb/s Optical Measurement

Test Channel 1 w/o FFE

Test Channel 1 w/ Asymmetric FFE

Dynamic Thermal Tracking Test

Tracking Off

Dynamic Thermal Tracking Test

112Gb/s PAM4 Transmitter

[[]Li ISSCC 2020]

- Look-up table (LUT)
 DAC-based output stage
- 2-tap linear FFE (21X slices)
- Non-linear static predistortion (4.5X slices)
- Nonlinear 2-tap FFE (2.25X slices)

112Gb/s DAC Output

- Differential cascade output driver w/ level shifted pre-drivers
- Per-slice series R_L and lumped shunt R_T improve linearity at the cost of reduced output swing (3V_{ppd})
- Series peaking inductor provides significant bandwidth extension

112Gb/s PAM4 Eye Diagrams

- Utilizing only linear FFE results in significant eye skew and poor TDECQ
- Enabling the non-linear pre-distortion and FFE aligns the 3 eyes and improves TDECQ by ~1.5dB

Conclusion

- The desired link reach impacts optical transmitter choice
- High-speed transmitter circuits must be optimized for a specific optical source
- VCSELs are typically driven by current-mode drivers and employ equalization to extend data rate
- MZMs are relatively large devices that must be driven with either controlled impedance drivers or multi-segment drivers that are tightly integrated with the PIC
- EAMs are smaller and can be driven as a lumped element with high-swing voltage-mode drivers
- RRMs allow for inherent WDM and can be driven as a lumped element with high-swing voltage-mode drivers, but require resonant wavelength stabilization