
Sam Palermo
Analog & Mixed-Signal Center

Texas A&M University

ECEN620: Network Theory
Broadband Circuit Design

Fall 2023

Lecture 9: Digital PLLs



Announcements
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• HW3 due Oct 31

• HW4 due Nov 7



Agenda
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• Digital PLL Overview
• Linear Model
• Design Procedure
• Noise Analysis
• Time-to-Digital Converters
• Conclusion



References
• Techniques for High-Performance Digital 

Frequency Synthesis and Phase Control, 
C.-M. Hsu, MIT Thesis, 2008.

• [Kratyuk TCAS2 2007] provides a nice 
design procedure

• TDC papers posted on the website
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Analog PLL Issues
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• Charge pump suffers from UP/DN current mismatch, 
low output impedance, and leakage

• Loop filter is large area and has noise and leakage
• Can we map this functionality to the digital domain?
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Digital Mapping of CP & Loop Filter
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• Analog filter resistive proportional and capacitive integral gain is 
mapped to a digital filter

• Large filter capacitor is replaced with a small digital accumulator
• Requires a digital input from a phase/time-to-digital converter
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Digital PLL
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• Time-to-digital (TDC) converts input phase error to 
a digital word

• Digital loop filter provides PI control to allow for a 
Type 2 system

• Digitally-controlled oscillator (DCO) produces the 
output clock signal
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Agenda
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• Digital PLL Overview
• Linear Model
• Design Procedure
• Noise Analysis
• Time-to-Digital Converters
• Conclusion



Digital PLL Model
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• A hybrid discrete- and continuous-time 
model is used to capture the effects of 
important noise sources
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TDC Model
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• TDC converts the time difference between the input and feedback 
clocks to a digital code at a resolution t

• Phase-domain model requires an initial scaling factor to convert the 
input phase error to a timing error
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Digital Loop Filter
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DCO Model
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• DCO modelled as a DAC followed by a VCO

DAC Gain = 
𝑉
2    V/LSB

• Converting from DT-CT requires scaling by reference period T
• Standard phase-domain VCO model utilized

DCO Gain = 
𝑉
2 𝑇𝐾     

𝑟𝑎𝑑
𝑠 · 𝐿𝑆𝐵

VFS

VCO out

R

R/2

R

R/2

DecoderDCO[k]
B

KVCO

j2f out(t)

DCO

2B
VFS

DAC 
Gain

T

DT-CT

DCO[k]




KVCO

j2f

1
N

TDC

H(z)

fb[k]

out(t)

Loop 
Filter

DCO

Divider

in[k]
2
T

t

1

z=ej2fT

2B
VFS

TDC 
Gain

DAC 
Gain

T

DT-CT

1
T

CT-DT

Linear Digital PLL Model
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DT & CT Spectral Density Calculations
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14GHz Digital PLL 
Closed-Loop Transfer Function (Initial Design)
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Digital PLL Loop Gain

16

𝐿𝐺 𝑓
𝑇

2𝜋
1
Δ 𝐻 𝑒

𝑉
2

𝐾
𝑗2𝜋𝑓

1
𝑁


KVCO

j2f

1
N

TDC

H(z)

fb[k]

out(t)

Loop 
Filter

DCO

Divider

in[k]
2
T

t

1

z=ej2fT

2B
VFS

TDC 
Gain

DAC 
Gain

T

DT-CT

1
T

CT-DT



Agenda
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Second-Order Digital PLL Design Procedure
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• Design the digital PLL to emulate a second-order analog 
charge-pump PLL [Kratyuk TCAS2 2007]
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Second-Order Digital PLL Design Procedure
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Parameter
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Second-Order Digital PLL Design Procedure
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Parameter

156.25MHzFref

90N

14GHzFvco

2MHzfu

60°m

10pst

2π*1MHz/LSB 
(10b)(VFS/2B)Kvco
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??

PLL Specs4. Set an equivalent C value to achieve z
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Simulated Responses

• Design achieves fu=2MHz and m=60°
• Closed loop response has f3dB=2.7MHz
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Common Digital PLL Noise Sources
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Noise Transfer Functions

• Input reference and TDC quantization noise is low-pass filtered
• Loop filter output DAC quantization noise (DCO input noise) is 

band-pass filtered
• DCO output phase noise is high-pass filtered
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Input Reference Noise
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• After PLL: j,in = 217fsrms (10kHz – 10MHz)
• Including CDR: j,in = 46fsrms (100Hz – 7GHz)



w/ t=10ps

𝑆 𝑒
∆
12 231𝑑 𝐵 𝐻⁄ 𝑧

TDC Quantization Noise

• Using the TDC output 
directly results in 
quantization noise 
with a uniform power 
spectral density
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TDC Quantization Noise
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𝑆 𝑓 𝑆 𝑒
1
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1
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• After PLL: j,tq = 671fsrms (10kHz – 10MHz)
• Including CDR: j,tq = 345fsrms (100Hz – 7GHz)
• This is too high! Will need to increase TDC resolution.



Loop Filter DAC Quantization Noise

• Truncating the digital filter output at a certain resolution 
and applying it to the DAC results in quantization noise 
with a uniform power spectral density
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Loop Filter DAC Quantization Noise
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• After PLL: j,DACq = 332fsrms (10kHz – 10MHz)
• Including CDR: j,DACq = 211fsrms (100Hz – 7GHz)
• This is too high! Will need to increase DAC resolution.



DCO Noise
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• After PLL: j,in = 228fsrms (10kHz – 10MHz)
• Including CDR: j,in = 115fsrms (100Hz – 7GHz)



Total Noise
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• After PLL: j,Total = 842fsrms (10kHz – 10MHz)
• Including CDR: j,Total = 423fsrms (100Hz – 7GHz)

• TDC quantization noise dominates over much of the spectrum
• Loop filter DAC quantization noise is also significant
• Higher effective resolution TDC & DAC is necessary!
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Increase TDC & DAC Resolution
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After CDR

• Increase resolution: TDC t=2ps & (VFS/2B)KVCO=250kHz (12b)
• After PLL: j,Total = 353fsrms (10kHz – 10MHz)

• Reference clock noise dominates at low frequency
• DCO dominates near loop bandwidth and higher

• Including CDR: j,Total = 151fsrms (100Hz – 7GHz)
• Now DCO noise clearly dominates total



Delta Sigma Modulation

• DS modulation provides high-
pass quantization noise 
shaping to dramatically 
reduce low-frequency content
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With Delta-Sigma Modulation
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DCO
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47.2%

TDC & DAC <1%
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8% DAC
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After CDR

• Add  modulation to TDC t=2ps & (VFS/2B)KVCO=250kHz (12b)
• After PLL: j,Total = 316fsrms (10kHz – 10MHz)

• Reference clock noise dominates at low frequency
• DCO dominates near loop bandwidth and higher

• Including CDR: j,Total = 133fsrms (100Hz – 7GHz)
• Now DCO noise clearly dominates total
• Some contribution from TDC & DAC at high frequency



With Delta-Sigma Modulation 
& Relaxed TDC & DAC
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After CDR

• Include  modulation with relaxed TDC t=5ps & (VFS/2B)KVCO=500kHz (11b)
• After PLL: j,Total = 318fsrms (10kHz – 10MHz)

• Reference clock noise dominates at low frequency
• DCO dominates near loop bandwidth and higher

• Including CDR: j,Total = 169fsrms (100Hz – 7GHz)
• Now DCO noise clearly dominates total
• Increased contribution from TDC & DAC at high frequency could be reduced with additional 

passive filter after DAC and/or operating  with higher frequency clock
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Flash TDC
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• Flash TDC converts the time difference 
between the input and feedback clocks 
to a digital code at a resolution t with 
a single delay chain

• Unit cell delay limits TDC resolution 
and can introduce significant 
quantization noise
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Vernier TDC
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• Both inputs pass through different delay lines
• Increases TDC resolution to t1-t2
• Sensitive to mismatch between the two delay lines
• Delay stage count scales with increased resolution 

to cover a given full scale range
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Two-Step TDC
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• Coarse conversion with input flash TDC
• Time residue transferred to Vernier TDC for fine conversion
• Allows for Vernier resolution with reduced area for a given 

full scale range

[Ramakrishnan VLSID 2006]



Two-Step TDC w/ Time Amplification
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• Utilizes two single delay chain 
TDCs with a time amplifier 
between stages to improve 
resolution

• Time amplifier is based on
unbalanced SR latches

• Achieves 1.25ps LSB in 90nm

[Lee JSSC 2008]



Interpolating TDC
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• Interpolation with 
passive resistors 
provides a simple 
technique to increase 
TDC resolution

• Delay line output is 
cycled through the 
loop to increase 
conversion range

[Henzler ISSCC 2008]



Oscillator-Based TDC
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• Gated ring oscillator (GRO) is enabled between rising 
edges of the two input clocks

• Counting the oscillator transitions performs the conversion
• The GRO retains internal state between measurements, 

providing first-order quantization noise shaping

[Hsu JSSC 2008]



Oscillator-Based TDC
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• All transitions of the oscillator’s multiple phases can be 
counted to increase resolution

• Resolution is further increased with a multipath ring oscillator
• Achieves 6ps resolution in 0.13um

[Hsu JSSC 2008]



Conclusion
• Digital PLLs can eliminate analog charge 

pump non-idealities and allow for lower-
area loop filters

• Key blocks are the input TDC, digital PI 
loop filter, and DCO

• Quantization noise is introduced by the 
TDC and loop filter DAC/DCO

• Advanced TDC architectures can achieve 
sub-inverter delay resolution
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Next Time
• Fractional-N Frequency Synthesizers
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