ECEN620: Network Theory Broadband Circuit Design Fall 2023

Lecture 9: Digital PLLs

Sam Palermo Analog & Mixed-Signal Center Texas A&M University

Announcements

- HW3 due Oct 31
- HW4 due Nov 7

Agenda

- Digital PLL Overview
- Linear Model
- Design Procedure
- Noise Analysis
- Time-to-Digital Converters
- Conclusion

References

- Techniques for High-Performance Digital Frequency Synthesis and Phase Control, C.-M. Hsu, MIT Thesis, 2008.
- [Kratyuk TCAS2 2007] provides a nice design procedure

• TDC papers posted on the website

Analog PLL Issues

- Charge pump suffers from UP/DN current mismatch, low output impedance, and leakage
- Loop filter is large area and has noise and leakage
- Can we map this functionality to the digital domain?

Digital Mapping of CP & Loop Filter

- Analog filter resistive proportional and capacitive integral gain is mapped to a digital filter
- Large filter capacitor is replaced with a small digital accumulator
- Requires a digital input from a phase/time-to-digital converter

Digital PLL

- Time-to-digital (TDC) converts input phase error to a digital word
- Digital loop filter provides PI control to allow for a Type 2 system
- Digitally-controlled oscillator (DCO) produces the output clock signal

Agenda

- Digital PLL Overview
- Linear Model
- Design Procedure
- Noise Analysis
- Time-to-Digital Converters
- Conclusion

Digital PLL Model

 A hybrid discrete- and continuous-time model is used to capture the effects of important noise sources

TDC Model

• TDC converts the time difference between the input and feedback clocks to a digital code at a resolution Δ_t

TDC Gain =
$$\frac{1}{\Delta_t}$$
 with units of s^{-1}

 Phase-domain model requires an initial scaling factor to convert the input phase error to a timing error

$$t_e = \phi_e \left(\frac{T}{2\pi}\right)$$

Effective TDC Gain =
$$\frac{T}{2\pi\Delta_t}$$
 with units of rad⁻¹

Digital Loop Filter

Analog Filter Transfer Function

$$F(s) = \frac{R\left(s + \frac{1}{RC}\right)}{s}$$

w/ Bilinear Transform $H(z) = \frac{OUT}{IN} = \alpha + \frac{\beta}{1 - z^{-1}} \xrightarrow{s = \left(\frac{2}{T}\right) \left(\frac{1 - z^{-1}}{1 + z^{-1}}\right)} H(s) = \frac{\left[\alpha + \frac{\beta}{2}\right] \left[s + \frac{\beta}{\left(\alpha + \frac{\beta}{2}\right)T}\right]}{s}$

Matching the analog filter transfer function results in

$$\alpha = R - \frac{T}{2C} \qquad \beta = \frac{T}{C}$$

DCO Model

• DCO modelled as a DAC followed by a VCO

DAC Gain =
$$\frac{V_{FS}}{2^B}$$
 (V/LSB)

- Converting from DT-CT requires scaling by reference period T
- Standard phase-domain VCO model utilized

DCO Gain =
$$\left(\frac{V_{FS}}{2^B}\right) T K_{VCO} \quad \left(\frac{rad}{s \cdot LSB}\right)$$

Linear Digital PLL Model

DT & CT Spectral Density Calculations

Since H(f) is computed with a DT input, a CT $S_x(f)$ must be first converted to a DT $S_x(e^{j2\pi fT})$ by scaling with $\left(\frac{1}{T}\right)$

CT-DT

$$S_x(f) \rightarrow \boxed{\frac{1}{T}} \xrightarrow{S_x(e^{j2\pi fT})} \xrightarrow{H(f)} S_y(f)$$

 $S_x(e^{j2\pi fT}) = \left(\frac{1}{T}\right) S_x(f)$

Computing a CT $S_y(f)$ output with a DT $S_x(e^{j2\pi fT})$ input through H(f) requires scaling by $\left(\frac{1}{T}\right)$ $S_y(f) = \left(\frac{1}{T}\right) |H(f)|^2 S_x(e^{j2\pi fT})$

Total system output with $S_x(f)$

$$S_y(f) = \left(\frac{1}{T}\right)^2 |H(f)|^2 S_x(f)$$

14GHz Digital PLL Closed-Loop Transfer Function (Initial Design)

Parameter					
Fref	156.25MHz				
Ν	90				
Fvco	14GHz				
f _u	2MHz				
$\Phi_{\sf m}$	60°				
f _{3dB}	2.7MHz				
Δ_{t}	10ps				
(V _{FS} /2 ^B)Kvco	2π*1MHz/LSB (10b)				
α	1.49				
β	7.11e-2				

$$\frac{\phi_{out}(f)}{\phi_{in}(f)} = \left(\frac{1}{T}\right)^{2} \left| \frac{(T)\left(\frac{T}{2\pi}\right)\left(\frac{1}{\Delta_{t}}\right)H\left(e^{j2\pi fT}\right)\left(\frac{V_{FS}}{2^{B}}\right)\left(\frac{K_{VCO}}{j2\pi f}\right)}{1 + \left(\frac{T}{2\pi}\right)\left(\frac{1}{\Delta_{t}}\right)H(e^{j2\pi fT})\left(\frac{V_{FS}}{2^{B}}\right)\left(\frac{K_{VCO}}{j2\pi f}\right)\left(\frac{1}{N}\right)} \right|^{2}$$

Digital PLL Loop Gain

$$LG(f) = \left(\frac{T}{2\pi}\right) \left(\frac{1}{\Delta_t}\right) H\left(e^{j2\pi fT}\right) \left(\frac{V_{FS}}{2^B}\right) \left(\frac{K_{VCO}}{j2\pi f}\right) \left(\frac{1}{N}\right)$$

Agenda

- Digital PLL Overview
- Linear Model
- Design Procedure
- Noise Analysis
- Time-to-Digital Converters
- Conclusion

Second-Order Digital PLL Design Procedure

 Design the digital PLL to emulate a second-order analog charge-pump PLL [Kratyuk TCAS2 2007]

Digital PLL Analog PLL

$$LG(f) = \left(\frac{T}{2\pi}\right) \left(\frac{1}{\Delta_t}\right) H(e^{j2\pi fT}) \left(\frac{V_{FS}}{2^B}\right) \left(\frac{K_{VCO}}{j2\pi f}\right) \left(\frac{1}{N}\right) \Leftrightarrow LG(s) = \left(\frac{I_{CP}}{2\pi}\right) \left(\frac{R(s+\omega_z)}{s}\right) \left(\frac{K_{VCO}}{s}\right) \left(\frac{1}{N}\right)$$
Digital PLL PDC Gain $\left(\frac{T}{2\pi}\right) \left(\frac{1}{\Delta_t}\right) \Leftrightarrow \left(\frac{I_{CP}}{2\pi}\right)$ Analog PLL PFD Gain
Digital PLL $H(z) = \alpha + \frac{\beta}{2\pi} \Leftrightarrow E(s) = \frac{R(s+\omega_z)}{s}$ Analog PLL

Loop Filter $H(z) = \alpha + \frac{r}{1 - z^{-1}} \Leftrightarrow F(s) = \frac{H(c + \alpha_2)}{s}$ **Loop Filter**

Digital PLL
Effective DCO Gain $\begin{pmatrix} V_{FS} \\ 2^B \end{pmatrix}(K_{VCO}) \Leftrightarrow (K_{VCO})$ Analog PLL
VCO Gain

Second-Order Digital PLL Design Procedure

1. Set
$$\omega_z$$
 based on ω_u and Φ_m specs

$$\omega_z = \frac{\omega_u}{\tan(\Phi_m)}$$

 $\omega_u = 2\pi * 2MHz$ & $\Phi_m = 60^\circ \rightarrow \omega_z = 2\pi * 1.16MHz$

2. Compute an equivalent I_{CP} based on TDC gain

$$I_{CP} = \frac{T}{\Delta_t}$$

$$F_{ref} = 156.25 MHz \& \Delta_t = 10 ps \rightarrow I_{CP} = 640A$$

3. Set an equivalent R value to achieve required loop gain

$$R = \left(\frac{2\pi N}{I_{CP}\left(\frac{V_{FS}}{2^{B}}\right)(K_{VCO})}\right) \frac{\omega_{u}^{2}}{\sqrt{\omega_{z}^{2} + \omega_{u}^{2}}}$$

$$N = 90 \& \left(\frac{V_{FS}}{2^B}\right)(K_{VCO}) = \frac{2\pi * 1MHz}{LSB} \to R = 1.53\Omega$$

PLL Specs

Parameter						
Fref	156.25MHz					
N	90					
Fvco	14GHz					
f _u	2MHz					
Φ_{m}	60°					
Δ_{t}	10ps					
(V _{FS} /2 ^B)Kvco	2π*1MHz/LSB (10b)					
α	??					
β	??					

Second-Order Digital PLL Design Procedure

4. Set an equivalent C value to achieve ω_z

$$C = \frac{1}{\omega_z R}$$

$$C = 90.1nF$$

5. Compute α and β from equivalent R and C values

$$\alpha = R - \frac{T}{2C} \qquad \beta = \frac{T}{C}$$

$$\alpha = 1.49 \& \beta = 7.11 * 10^{-2}$$

PLL Specs

Parameter							
Fref	156.25MHz						
Ν	90						
Fvco	14GHz						
f _u	2MHz						
Φ_{m}	60°						
Δ_{t}	10ps						
(V _{FS} /2 ^B)Kvco	2π*1MHz/LSB (10b)						
α	??						
β	??						

Simulated Responses

- Design achieves $f_u = 2MHz$ and $\Phi_m = 60^{\circ}$
- Closed loop response has f_{3dB}=2.7MHz

Agenda

- Digital PLL Overview
- Linear Model
- Design Procedure
- Noise Analysis
- Time-to-Digital Converters
- Conclusion

Common Digital PLL Noise Sources

Noise Transfer Functions

- Input reference and TDC quantization noise is low-pass filtered
- Loop filter output DAC quantization noise (DCO input noise) is band-pass filtered
- DCO output phase noise is high-pass filtered

Input Reference Noise

$$S_{\phi_{out}}^{\phi_{in}}(f) = S_{\phi_{in}}(f) \left(\frac{1}{T}\right)^2 |NTF_{IN}(f)|^2 = S_{\phi_{in}}(f) \left(\frac{1}{T}\right)^2 \left|\frac{N \cdot T \cdot LG(f)}{1 + LG(f)}\right|^2$$

• After PLL: $\sigma_{j,in} = 217 fs_{rms} (10 kHz - 10 MHz)$

• Including CDR: $\sigma_{j,in} = 46 fs_{rms} (100 Hz - 7 GHz)$

TDC Quantization Noise

 Using the TDC output directly results in quantization noise with a uniform power spectral density

TDC Quantization Noise

$$S_{\phi_{out}}^{t_q}(f) = S_{t_q}\left(e^{j2\pi fT}\right) \left(\frac{1}{T}\right) \left|NTF_{TQ}(f)\right|^2 = S_{t_q}\left(e^{j2\pi fT}\right) \left(\frac{1}{T}\right) \left|\frac{N \cdot 2\pi \cdot LG(f)}{1 + LG(f)}\right|^2$$

• After PLL: $\sigma_{j,tq} = 671 \text{fs}_{\text{rms}} (10 \text{kHz} - 10 \text{MHz})$

- Including CDR: $\sigma_{j,tq} = 345 fs_{rms} (100 Hz 7 GHz)$
- This is too high! Will need to increase TDC resolution.

Loop Filter DAC Quantization Noise

 Truncating the digital filter output at a certain resolution and applying it to the DAC results in quantization noise with a uniform power spectral density

Loop Filter DAC Quantization Noise

$$S_{\phi_{out}}^{DAC_q}(f) = S_{DAC_q}\left(e^{j2\pi fT}\right) \left(\frac{1}{T}\right) \left|NTF_{DACQ}(f)\right|^2 = S_{DAC_q}\left(e^{j2\pi fT}\right) \left(\frac{1}{T}\right) \left|\frac{T\left(\frac{K_{VCO}}{j2\pi f}\right)}{1 + LG(f)}\right|^2$$

• After PLL: $\sigma_{j,DACq} = 332 fs_{rms} (10 kHz - 10 MHz)$

- Including CDR: $\sigma_{j,DACq} = 211 \text{fs}_{rms} (100 \text{Hz} 7 \text{GHz})$
- This is too high! Will need to increase DAC resolution.

DCO Noise

$$S_{\phi_{out}}^{\phi_{DCO}}(f) = S_{\phi_{DCO}}(f) |NTF_{VCO}(f)|^2 = S_{\phi_{DCO}}(f) \left| \frac{1}{1 + LG(f)} \right|^2$$

- After PLL: $\sigma_{j,in} = 228 fs_{rms} (10 kHz 10 MHz)$
- Including CDR: $\sigma_{j,in} = 115 fs_{rms} (100 Hz 7 GHz)$

Total Noise

- After PLL: $\sigma_{j,Total} = 842 fs_{rms} (10 kHz 10 MHz)$
- Including CDR: $\sigma_{j,Total} = 423 fs_{rms} (100 Hz 7 GHz)$
 - TDC quantization noise dominates over much of the spectrum
 - Loop filter DAC quantization noise is also significant
 - Higher effective resolution TDC & DAC is necessary!

Increase TDC & DAC Resolution

- Increase resolution: TDC Δ_t =2ps & (V_{FS}/2^B)K_{VCO}=250kHz (12b)
- After PLL: $\sigma_{j,Total} = 353 fs_{rms} (10 kHz 10 MHz)$
 - Reference clock noise dominates at low frequency
 - DCO dominates near loop bandwidth and higher
- Including CDR: $\sigma_{j,Total} = 151 \text{fs}_{rms} (100 \text{Hz} 7 \text{GHz})$
 - Now DCO noise clearly dominates total

Delta Sigma Modulation

 DS modulation provides highpass quantization noise shaping to dramatically reduce low-frequency content

With Delta-Sigma Modulation

- Add $\Delta\Sigma$ modulation to TDC Δ_t =2ps & (V_{FS}/2^B)K_{VCO}=250kHz (12b)
- After PLL: $\sigma_{j,Total} = 316 fs_{rms} (10 kHz 10 MHz)$
 - Reference clock noise dominates at low frequency
 - DCO dominates near loop bandwidth and higher
- Including CDR: $\sigma_{i,Total} = 133 \text{fs}_{\text{rms}} (100 \text{Hz} 7 \text{GHz})$
 - Now DCO noise clearly dominates total
 - Some contribution from TDC & DAC at high frequency

With Delta-Sigma Modulation & Relaxed TDC & DAC

- Include $\Delta\Sigma$ modulation with relaxed TDC Δ_t =5ps & (V_{FS}/2^B)K_{VCO}=500kHz (11b)
- After PLL: $\sigma_{j,Total} = 318 \text{fs}_{rms} (10 \text{kHz} 10 \text{MHz})$
 - Reference clock noise dominates at low frequency
 - DCO dominates near loop bandwidth and higher
- Including CDR: $\sigma_{j,Total} = 169 \text{fs}_{rms}$ (100Hz 7GHz)
 - Now DCO noise clearly dominates total
 - Increased contribution from TDC & DAC at high frequency could be reduced with additional passive filter after DAC and/or operating $\Delta\Sigma$ with higher frequency clock

Agenda

- Digital PLL Overview
- Linear Model
- Design Procedure
- Noise Analysis
- Time-to-Digital Converters
- Conclusion

Flash TDC

- Flash TDC converts the time difference between the input and feedback clocks to a digital code at a resolution ∆_t with a single delay chain
- Unit cell delay limits TDC resolution and can introduce significant quantization noise

Vernier TDC

- Both inputs pass through different delay lines
- Increases TDC resolution to Δ_{t1} - Δ_{t2}
- Sensitive to mismatch between the two delay lines
- Delay stage count scales with increased resolution to cover a given full scale range

Two-Step TDC

- Coarse conversion with input flash TDC
- Time residue transferred to Vernier TDC for fine conversion
- Allows for Vernier resolution with reduced area for a given full scale range

Two-Step TDC w/ Time Amplification

Code

- Utilizes two single delay chain TDCs with a time amplifier between stages to improve resolution
- Time amplifier is based on unbalanced SR latches
- Achieves 1.25ps LSB in 90nm

Interpolating TDC

- Interpolation with passive resistors provides a simple technique to increase TDC resolution
- Delay line output is cycled through the loop to increase conversion range

[Henzler ISSCC 2008]

ref.	technique	tech. [nm]	resol. [ps]	single shot precision	IN IL SB1	IL [ps]	DNL	[ps]	power ¹	area [mm²]	variation robustness
					[200]	[bo]	[200]	[po]			
[1]	delay line	90	20.0		0.7	14.0	0.6	12.0	157	0.01	++
[2]	vernier	700	30.0	0.7 LSB	1.3	39.0				10	+
[3]	pulse shrinking	350	68.0	0.8 LSB					1102	0.03	-
[4]	parallel del. elements	350	12.2		1.6	19.5			735	7.5	—
[5]	delay amplification	90	1.25		3.0	3.7	0.8	1.0	300	0.6	
[6]	scrambling	130								0.02	
this	loc. passive interpol.	90	4.7	0.7 LSB	1.2	5.6	0.6	2.8	14	0.02	++

 1 normalized power defined by (1MHz x P)/(V $_{\text{DD}}^2 x$ f)

Oscillator-Based TDC

[Hsu JSSC 2008]

- Gated ring oscillator (GRO) is enabled between rising edges of the two input clocks
- Counting the oscillator transitions performs the conversion
- The GRO retains internal state between measurements, providing first-order quantization noise shaping

Oscillator-Based TDC

- All transitions of the oscillator's multiple phases can be counted to increase resolution
- Resolution is further increased with a multipath ring oscillator
- Achieves 6ps resolution in 0.13um

Conclusion

- Digital PLLs can eliminate analog charge pump non-idealities and allow for lowerarea loop filters
- Key blocks are the input TDC, digital PI loop filter, and DCO
- Quantization noise is introduced by the TDC and loop filter DAC/DCO
- Advanced TDC architectures can achieve sub-inverter delay resolution

Next Time

Fractional-N Frequency Synthesizers