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Announcements

e HW2 due Oct 3

e Requires transistor-level design

e For 90nm CMOS device models, see
https://people.engr.tamu.edu/spalermo/ecen689/cadence 90nm 2023.pdf

e Can use other technology models if they are a
90nm or more advanced CMOS node




PLL Block Diagram
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e The lowpass loop filter extracts the average
of the phase detector error pulses in order
to produce the VCO control voltage



Agenda

e \Voltage-Mode Filters

e Charge-Pump PLL PI Filter

e Filter with Capacitive Multiplier

e Split Proportional & Integral Path Filters
e Pattern Jitter

o Sample-Reset Loop Filter



Passive Lag-Lead Filter
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e Dimensionless voltage-mode filter used in Type-1 PLLs

o (Called lag-lead because the pole is at a lower frequency
than the zero

o Ideally, the passive filter displays no nonlinearity



Active Lag-Lead Filter
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e Dimensionless voltage-mode filter used in Type-1 PLLs
e Active filter allows for potential gain in the loop filter
e Opamp noise and linearity can impact PLL performance



Active Proportional-Integral (PI) Filter
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e Dimensionless voltage-mode filter used in Type-2 PLLs
e Opamp noise and linearity can impact PLL performance

e Opamp open loop gain limits the low-frequency gain and
ideal transfer function



Closed-Loop Transfer Functions
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Agenda

» \oltage-Mode Filters

e Charge-Pump PLL PI Filter

e Filter with Capacitive Multiplier

e Split Proportional & Integral Path Filters
e Pattern Jitter

o Sample-Reset Loop Filter



Charge Pump PLL Passive PI Loop Filter
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o Simple passive filter is most commonly used
e Integrates low-frequency phase errors onto C1 to set average frequency

e Resistor (proportional gain) isolates phase correction from frequency
correction

e Primary capacitor C1 affects PLL bandwidth
o Zero frequency affects PLL stability

e Resistor adds thermal noise which is band-pass filtered by PLL
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Loop Filter Transfer Function

e Neglecting secondary capacitor, C,
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Loop Filter Transfer Function

e With secondary capacitor, C,
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Why have C,?

e Secondary capacitor smoothes control voltage ripple

e Can’t make too big or loop will go unstable
« C, < C,/10 for stability
« C, > C,/50 for low jitter
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Loop Filter Resistors

e Poly and special metal resistors are commonly used

e MOSFET resistors can be used if the resistor is placed
“below” the C1 cap

 This ensures a constant V¢ voltage on the transistor

e Programmable R value possible with switches

 Switches should be CMOS transmission gates to minimize parasitic
switch resistance variation with control voltage level

« Good practice is to make Rswitch <10% of the main filter R to
minimize the impact of switch resistatnce variations

............................................................................
S
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R or Con Top?

e Ideally, the loop filter has the same transfer function and
transient response independent of the RC order

e In reality, the bottom-plate capacitance and switch
resistance variation will impact this ideal transfer function

o If the cap is on top, the bottom-plate capacitance will
introduce another high frequency pole

o If the resistor is on top, any switch resistance will have
increased variation with the control voltage level

R% =
R
T

C
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Loop Filter Capacitors

e To minimize area, we would like to use highest density caps

e Thin oxide MOS cap gate leakage can be an issue
« Similar to adding a non-linear parallel resistor to the capacitor
« |Leakage is voltage and temperature dependent
« Will result in excess phase noise and spurs

e Metal caps or thick oxide caps are a better choice
« Trade-off is area

e Metal cap density can be <1/10 thin oxide caps

o Filter cap frequency response can be relatively low, as PLL
loop bandwidths are typically 1-50MHz
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Agenda

» \oltage-Mode Filters

e Charge-Pump PLL PI Filter

e Filter with Capacitive Multiplier

e Split Proportional & Integral Path Filters
e Pattern Jitter

o Sample-Reset Loop Filter
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Loop Filter w/ Capacitive Multiplier
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Capacitor Multiplier Transfer Function
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Loop Filter Sim. w/ Capacitive Multiplier
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e Overall loop filter response is similar above 100Hz

e Capacitive multiplier approach allows for large capacitor
values at reduced area

e Relatively simple approach with small leakage
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Agenda

» \oltage-Mode Filters

e Charge-Pump PLL PI Filter

e Filter with Capacitive Multiplier

e Split Proportional & Integral Path Filters
e Pattern Jitter

o Sample-Reset Loop Filter
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Loop Filter Transfer Function

e Neglecting secondary capacitor, C,
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Split Proportional & Integral Gain Path

e Proportional and integral gain paths can be split by utilizing
2 independent charge pumps driving the integral capacitor
and the proportional effective resistor

e Often, the proportional and integral voltages are summed
with a voltage-to-current converter to control a current-
controlled oscillator (ICO)

- Allows for self-biased PLL CP1 Vintegral
architectures whose ——
normalized loop bandwidth 1 | V21
and damping factor 0
remains constant over v | l Iveo
different output frequencies |CP2 proportions]

« We will look at these PLL "Res” RO

architectures in more detail

later Virtual V
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Agenda

» \oltage-Mode Filters

e Charge-Pump PLL PI Filter

e Filter with Capacitive Multiplier

e Split Proportional & Integral Path Filters
e Pattern Jitter

o Sample-Reset Loop Filter
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Control Voltage Ripple

o

PLL Synthesizing a 388MHz Signa
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o After phase locking, disturbances at a time interval equal
to the reference clock period cause time-domain period
jitter and frequency-domain reference clock spurs

e Caused by charge pump current imbalance, loop filter
leakage, and reference clock jitter
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Pattern Jitter
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e A dominant form of pattern jitter is due to the proportional
gain term, Ix*R
o Every time the reference clock goes high, charge pump

mismatch current dropped on the filter resistor causes
control voltage ripple

e This results in shorter (or longer) output cycles that occur
at a time interval equal to the reference clock period
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Pattern Jitter w/ Secondary Capacitor
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e Adding a secondary loop filter capacitor introduces extra
filtering, which reduces the control voltage disturbance
amplitude, but extends it over many cycles

e Makes an ideal second-order PLL into a third-order system
e Stability limits the size of C,

e Can we get this same effect without compromising stability?
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Agenda

» \oltage-Mode Filters

e Charge-Pump PLL PI Filter

e Filter with Capacitive Multiplier

e Split Proportional & Integral Path Filters
e Pattern Jitter

e Sample-Reset Loop Filter
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PLL w/ Sample-Reset Loop Filter
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A PLL with a standard RC filter
produces a voltage spike equal to
I-*R for a duration equal to the
phase error

A sample-reset loop filter replaces
the resistor with a capacitor that is
charged during the phase error and
reset every reference cycle

This spreads the correction voltage
nearly uniformly over the entire
reference period and reduces the
correction voltage peak value

This eliminates the need for
additional filtering with a secondary
capacitor, providing the opportunity
for near 90° phase margin

29



Sample-Reset Loop Filter w/ Single Capacitor
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e A single-capacitor implementation still has a (reduced) ripple
component due to the sample, hold, and reset operation

e Also, a very short reset pulse needs to be generated, which

may be difficult to realize with the control logic
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Sample-Reset Loop Filter w/ Double Capacitors

Traditional
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Sample-Reset PLL PFD
& Filter Switch Signal Generation
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e The PFD reset signal is divided by 2 to produce the even and odd
switch control signals

e During reset, the charge pump shouldn’t be conducting and the filter
capacitor can be applied to the main loop
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Sample-Reset PLL Small-Signal Model
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ICO Control Waveforms

Standard Charge Pump PLL
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e PLL w/ sample-reset filter has dramatically

reduced ripple vo

e The control signa
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Next Time

e VCOs
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