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Announcements
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• HW1 due Sept 12, 11:59PM
• Turn in via Canvas



Reading/References
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• Chapter 2, 3, 5, & 12 of Phaselock Techniques, F. Gardner, John Wiley & 
Sons, 2005. 
• https://onlinelibrary.wiley.com/doi/book/10.1002/0471732699

• Charge-Pump PLL Design Procedure Paper (OSU)

• Chapter 1-3.4 of “Low-Power Low-Jitter On-Chip Clock Generation,” M. 
Mansuri, Ph.D. thesis, UCLA, 2003.
• Posted on website

• Other references
• M. Perrott, High Speed Communication Circuits and Systems Course, MIT 

Open Courseware
• Chapter 2 of Phase-Locked Loops, 3rd Ed., R. Best, McGraw-Hill, 1997.
• Chapter 4 of Phase-Locked Loops for Wireless Communications, D. Stephens, 

Kluwer, 2002. 



Agenda
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• PLL Overview
• PLL Linear Model
• PLL Stability
• Analog Charge Pump PLL Design Procedure
• PLL Noise Transfer Functions
• PLL Transient Behavior
• PLL Time Domain Modeling



PLL Block Diagram
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• A phase-locked loop (PLL) is a negative feedback 
system where an oscillator-generated signal is 
phase AND frequency locked to a reference signal
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PLL Applications
• PLLs applications

• Frequency synthesis
• Multiplying a 100MHz reference clock to 10GHz

• Skew cancellation
• Phase aligning an internal clock to an I/O clock

• Clock recovery
• Extract from incoming data stream the clock frequency and 

optimum phase of high-speed sampling clocks

• Modulation/De-modulation
• Wireless systems
• Spread-spectrum clocking
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Embedded Clock (CDR) I/O Circuits
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• TX PLL

• TX Clock Distribution

• CDR
• Per-channel PLL-based
• Dual-loop w/ Global PLL &

• Local DLL/PI
• Local Phase-Rotator PLLs
• Global PLL requires RX 

clock distribution to 
individual channels



Xilinx 0.5-32Gb/s Transceiver Clocking
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• LC-PLL with 2 LC-VCOs used to cover high data rates 
(8-32Gb/s)

• Ring-PLL used for lower data rates
• CML clock distribution with active inductive loads used 

for low jitter

Active Inductor based Clock Distribution

Frac-N LC PLL1, 2

Ring PLL

DCC
IQ CAL

Receiver

DCC
Transmitter

Channels 1-4

I/Q1, I/Q2

∑

VCOLB

PPF

VCOHB

2
PI (D,X,S)

Technology CMOS 16nm FinFET 
Power Supply (Vavcc, Vavtt, Vaux) 0.9 V, 1. 2V, 1.8 V 

Frequency range 500 Mb/s – 32.75 Gb/s 
Transceiver Quad area 2.625 mm × 2.218 mm 

LC PLL range 8-16.375 GHz 
Ring PLL range 2-6.25 GHz 

TX PRBS7 jitter at 32.75Gb/s  TJ: 5.39 ps, RJ: 190 fs  
32.75Gb/s  RX JTOL @ 30MHz 

                                      @ 100MHz 
0.45 UI  
0.6 UI 

Channel loss at 32.75Gb/s 30 dB  
Measured BER at 32.75Gb/s < 10-15 

Power at 32.75Gb/s with DFE 577mW/ch (17.6pJ/b)  

[Upadhyaya VLSI 2016]



Agenda
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• PLL Overview
• PLL Linear Model
• PLL Stability
• Analog Charge Pump PLL Design Procedure
• PLL Noise Transfer Functions
• PLL Transient Behavior
• PLL Time Domain Modeling



Charge Pump PLL
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• Charge pump PLL is a common implementation
• Type-2 (2 integrators) allows for ideally zero phase error between 

the input and feedback phase
• Requires a stabilizing zero that is realized with the filter resistor
• A secondary capacitor C2 is often added for additional filtering to 

reduce reference spurs
• Modeled as a third-order system
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Linear PLL Model

11

in
KVCO

sKPD

1
N

e

Phase Detector

F(s)
Vctrl

fb

out

Loop Filter VCO

Divider

• Phase is the key variable of interest
• Output phase response to a stimulus injected at a given point in the loop
• Phase error response is also informative

• Linear “small-signal” analysis is useful for understand PLL dynamics if
• PLL is locked (or near lock)
• Input phase deviation amplitude is small enough to maintain operation in 

lock range



Understanding PLL Frequency Response

• Frequency domain analysis can tell us how well the PLL 
tracks the input phase as it changes at a certain frequency

• PLL transfer function is different depending on which point 
in the loop the output is responding to
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Phase Detector

• Detects phase difference between feedback clock 
and reference clock

• The loop filter will filter the phase detector output, 
thus to characterize phase detector gain, extract 
average output voltage

• The KPD factor can change depending on the 
specific phase detector circuit
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Dimension-Less Loop Filter

• Lowpass filter extracts average of phase 
detector signal

• No units for the dimension-less loop filter
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Example: Passive Lag-Lead Loop Filter
[Allen]



Averaged PFD Transfer Characteristic

• Constant slope and polarity asymmetry about zero phase 
allows for wide frequency range operation

• The averaged PFD gain is 1/(2) with units of rad-1
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Charge Pump
• Converts PFD output 

signals to charge

• Charge is proportional 
to PFD pulse widths
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Loop Filter

• Lowpass filter extracts average of phase 
detector error pulses

• The units of the filter are ohms
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Voltage-Controlled Oscillator

• Time-domain phase relationship
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Laplace Domain Model
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Loop Divider

• Time-domain model
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Phase & Frequency Relationships
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• Phase Step
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Phase & Frequency Relationships
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• Frequency Step  
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Phase & Frequency Relationships
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Open-Loop PLL Transfer Function
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• Open-loop response generally decreases with frequency

Forward Path Gain:  𝐺 𝑠

Open-Loop Response:  
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Closed-Loop PLL Transfer Function
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PLL Error Transfer Function
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• Ideally, we want this to be zero
• Phase error generally increases with 

frequency due to this high-pass response
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PLL Order and Type
• The PLL order refers to the number of poles in the 

closed-loop transfer function
• This is typically one greater than the number of loop 

filter poles

• The PLL type refers to the number of integrators 
within the loop
• A PLL is always at lease Type 1 due to the VCO 

integrator

• Note, the order can never be less than the type

26



First-Order PLL

• Simple first-order low-pass 
transfer function

• Closed-loop bandwidth is 
equal to the DC loop gain 
magnitude 
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• Note, the “DC Loop Gain Magnitude” 
is not simply the PLL open-loop gain 
evaluated at s=0. It is
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• This expression cancels the VCO DC pole and allows a comparison between PLLs of 
different orders and types. It is useful to predict the steady-state phase error. See 
Gardner 2.2.3 and 5.1.1.
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First-Order PLL Tracking Response
• The PLL’s tracking behavior, or how the phase error responds to an input 

phase change, varies with the PLL type

28

• Phase Step Response
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• The final value theorem can be used to find the steady-state phase error
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• All PLLs should have no steady-state phase error with a phase step error
• Note, this assumes that the frequency of operation is the same as the VCO 

center frequency (Vctrl=0).  Working at a frequency other than the VCO 
center frequency is considered having a frequency offset (step). 



First-Order PLL Tracking Response
• Frequency Offset (Step)
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• The final value theorem can be used to find the steady-
state phase error
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• With a frequency offset (step), a first-order PLL will lock 
with a steady-state phase error that is inversely 
proportional to the loop gain 
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First-Order PLL Issues
• The DC loop gain directly sets the PLL bandwidth

• No degrees of freedom

• In order to have low phase error, a large loop gain is 
necessary, which implies a wide bandwidth
• This may not be desired in applications where we would like to filter 

input reference clock phase noise

• First-order PLLs offer no filtering of the phase detector 
output
• Without this filtering, the PD may not be well approximated by a 

simple KPD factor
• Multiplier PDs have a “second-harmonic” term
• Digital PDs output square pulses that need to be filtered
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Second-Order Type-1 PLL 
w/ Passive Lag-Lead Filter
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Passive Lag-Lead Loop Filter [Allen]
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Second-Order Type-1 PLL 
w/ Passive Lag-Lead Filter
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• Phase Step Response
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• A second-order type-1 PLL will still lock with a phase error if 
there is a frequency offset!

Second-Order Type-1 PLL Tracking Response

• Frequency Offset (Step)
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Second-Order Type-1 PLL Properties
• While the second-order type-1 PLL will still lock 

with a phase error with a frequency offset, it is 
much more useful than a first-order PLL

• There are sufficient design parameters (degrees of 
freedom) to independently set n, , and KDC

• The loop filter conditions the phase detector 
output for proper VCO control

• Loop stability needs to be considered for the 
second-order system
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• Note, this type of loop filter is typically used with a charge-
pump driving it.  Thus, the filter transfer function is equal 
to the impedance.

Second-Order Type-2 PLL 
w/ Passive Series-RC Lag-Lead Filter
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Second-Order Type-2 PLL 
w/ Passive Series-RC Lag-Lead Filter
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• Phase Step Response
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• A second-order type-2 PLL will lock with no phase error with 
a frequency offset!

Second-Order Type-2 PLL Tracking Response

• Frequency Offset (Step)
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Second-Order Type-2 PLL Properties
• A big advantage of the type-2 PLL is that it has 

zero phase error even with a frequency offset
• This is why type-2 PLLs are very popular

• A type-2 PLL requires a zero in the loop filter for 
stability.
• Note, this is not required in a type-1 PLL

• This zero can cause extra peaking in the 
frequency response
• Important to minimize this in some applications, such 

as cascaded CDR systems
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Agenda
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• PLL Overview
• PLL Linear Model
• PLL Stability
• Analog Charge Pump PLL Design Procedure
• PLL Noise Transfer Functions
• PLL Transient Behavior
• PLL Time Domain Modeling



Feedback Configuration
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ACL(s)

Here f = feedback factor

[Karsilayan]
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[Karsilayan]
Note: a(s) can have higher-order poles
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[Karsilayan]
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[Karsilayan]



First-Order PLL
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First-Order PLL Stability
• Open-loop Bode 

plots are useful for 
checking stability via 
the phase margin

• A first-order PLL is 
inherently stable and 
always has 90
phase margin

45

  (dB)    log20 10 N
jG 

 
s

NK
s
KKKsG DCVCOPD  1



46

   
  

 

 

 

 

  22

2

2

21

2121

22

221

2

22

2

2121

22

221

2

0

21

221

2

21

2

2
 :FunctionError 

2
 :Factor Damping

 :Frequency Natural

1

1

2

2

1

1

 :FunctionTransfer 

lim :MagnitudeGain  Loop DC

1

1

1
1 :GainPath  Forward

nn

VCOPD

n

VCOPD

n

VCOPD
n

DCDC

DC

nn

n
VCOPD

n
n

VCOPDVCOPD

VCOPD

VCOPD
s

DC

DC
VCOPD

ss

KK
Nss

sE

KK
N

N
KK

KsKs

sK
N

ss

s
KK
N

N

N
KKsNKKs

sKK

sH

N
KK

N
ssGK

ss

sNK

ss
sKKsG






















































































































































































   

CRCR

s
ssF

2211

21

2

     

1
1













Second-Order Type-1 PLL 
w/ Passive Lag-Lead Filter



Second-Order Type-1 PLL 
w/ Lag-Lead Filter Stability
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PMZetaNorm. KDC
42.50.380.1
7711
88.73.0910

• Assuming a decade spacing between filter pole and zero

Normalizing 
KDC for =1

• A larger KDC provide a more stable system
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Second-Order Type-1 PLL w/ Lag-Lead Filter 
Output Response w/ Phase Step
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PMZetaNorm. KDC
42.50.380.1
7711
88.73.0910

• Note, time axis is scaled by sqrt(KDC) in order to view the 
phase step plots on one graph



Root Locus
• A Root-Locus Plot is a plot of the closed-loop poles in the 

complex s-plane as the loop gain changes from zero to 
very large

• Useful in visualizing system stability and sensitivity to 
variations in loop gain

• For stability, all poles should lie within the left-half plane, 
i.e no poles should be in the right-half plane

• A good design ensures that the poles have sufficient 
margin from the imaginary axis for proper stability, 
damping, and acceptable gain peaking
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Second-Order Type-1 PLL 
w/ Passive Lag-Lead Filter Root Locus
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Second-Order Type-1 PLL 
w/ Passive Lag-Lead Filter Root Locus
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Second-Order Type-1 PLL w/ Passive Lag-Lead 
Filter Closed-Loop Response
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• A larger KDC provide a more stable system and wider loop bandwidth
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Second-Order Type-2 PLL 
w/ Passive Series-RC Lag-Lead Filter
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R=1, C=1
• Initial pole values with 

zero loop gain are the 
open-loop poles

0     0 21  pp

• Final pole values with 
infinite loop gain are the 
open-loop zeros

 21     1 1 p
RC

p

Second-Order Type-2 PLL w/ Passive Series-RC 
Lag-Lead Filter Root Locus
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R=1, C=1

Second-Order Type-2 PLL w/ Passive Series-RC 
Lag-Lead Filter Root Locus

   

RC
KKss

RC
sNK

sH
s
RC

sK
sG









 








 


2

2

1
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1

N
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K1 for =1
0.1*K1  =0.38

10*K1  =3.09
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Normalizing K 
for =1

• A larger K provide a more stable system

  (dB)    log20 10 N
jG 

Second-Order Type-2 PLL 
w/ Passive Series-RC Lag-Lead Filter Stability

  2

1

s
RC

sNK
sG







 



PMZetaNorm. KDC
350.380.1
76.211
88.63.0910
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20*log10|H(j)|

/n t*sqrt(KDC)

Normalized Phase Step Response

• A larger KDC provide a more stable system and wider loop bandwidth

Second-Order Type-2 PLL w/ Passive Series-RC 
Lag-Lead Filter Closed-Loop Response
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N
 :Loop-Open

PMZetaNorm. KDC
350.380.1
76.211
88.63.0910



Typical Charge-Pump PLL Loop Filter

• A secondary capacitor C2 is often added for 
additional filtering to reduce reference spurs

• This introduces an extra pole and potential stability 
concerns
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Third-Order Type-2 PLL w/ Passive Series-RC 
Lag-Lead Filter & Additional Pole
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R=1, C1=1, C2=0.1
• Initial pole values with 

zero loop gain are the 
open-loop poles

11     0     0
21

21
321 




CRC
CCppp

• Final pole values with 
infinite loop gain

 jp
RC

p 5    1 1
3,21

Third-Order Type-2 PLL w/ Passive Series-RC 
Lag-Lead Filter & Additional Pole Root Locus

Open Loop: 
𝐺 𝑠

N

𝐾 𝑠 1
𝑅𝐶

𝑅𝐶 𝑠 𝑠 𝐶 𝐶
𝑅𝐶 𝐶

          Closed Loop: 𝐻 𝑠
𝑁𝐾 𝑠 1

𝑅𝐶

𝑅𝐶 𝑠 𝐶 𝐶
𝐶 𝑠 𝐾𝑠 𝐾

𝑅𝐶
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R=1, C1=1, C2=0.1

Third-Order Type-2 PLL w/ Passive Series-RC 
Lag-Lead Filter & Additional Pole Root Locus

K1 for =1
0.1*K1  =0.38

*A third-order system 
doesn’t formally have a 
value. Here we are using 
the same loop parameter 
values as the second-
order type-2 PLL for a 
given .

Open Loop: 
𝐺 𝑠

N

𝐾 𝑠 1
𝑅𝐶

𝑅𝐶 𝑠 𝑠 𝐶 𝐶
𝑅𝐶 𝐶

          Closed Loop: 𝐻 𝑠
𝑁𝐾 𝑠 1

𝑅𝐶

𝑅𝐶 𝑠 𝐶 𝐶
𝐶 𝑠 𝐾𝑠 𝐾

𝑅𝐶
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Normalizing K 
for =1

• A larger K provide a more stable system

  (dB)    log20 10 N
jG 

Second-Order Type-2 PLL 
w/ Passive Series-RC Lag-Lead Filter Stability

  2

1

s
RC

sNK
sG







 



PMZetaNorm. K
350.380.1
76.211
88.63.0910
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Normalizing K 
for =1

• A larger K may not provide a more stable system

  (dB)    log20 10 N
jG 

Third-Order Type-2 PLL w/ Passive Series-RC 
Lag-Lead Filter & Additional Pole Stability
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sG

PMZeta*Norm. K
300.380.1
5511
273.0910

*A third-order system 
doesn’t formally have a 
value. Here we are using 
the same loop parameter 
values as the second-
order type-2 PLL for a 
given .
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20*log10|H(j)|

/n t*sqrt(KDC)

Normalized Phase Step Response

• If K is increased too high frequency peaking and transient ringing occurs!

Third-Order Type-2 PLL Closed-Loop Response

PMZeta*Norm. K
300.380.1
5511
273.0910

Open Loop: 
𝐺 𝑠

N

𝐾 𝑠 1
𝑅𝐶

𝑅𝐶 𝑠 𝑠 𝐶 𝐶
𝑅𝐶 𝐶

          Closed Loop: 𝐻 𝑠
𝑁𝐾 𝑠 1

𝑅𝐶

𝑅𝐶 𝑠 𝐶 𝐶
𝐶 𝑠 𝐾𝑠 𝐾

𝑅𝐶



Instability and the Nyquist Criterion
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N
1factor feedback  by the multiplied gain  forward  theis    PLL aFor 

N
sGsT

sGsT



[Karsilayan]
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Frequency Sweep of Loop Gain, T(s)
[Karsilayan]

     :  PLL aFor 
N
sGsT 
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• PLL Overview
• PLL Linear Model
• PLL Stability
• Analog Charge Pump PLL Design Procedure
• PLL Noise Transfer Functions
• PLL Transient Behavior
• PLL Time Domain Modeling



Linear PLL Model
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in
KVCO

sKPD

1
N

e

Phase Detector

F(s)
Vctrl

fb

out

Loop Filter VCO

Divider

𝐾
𝐼
2𝜋

𝐹 𝑠

1
𝐶 𝑠 1

𝑅𝐶

𝑠 𝑠 𝐶 𝐶
𝑅𝐶 𝐶

𝐻 𝑠
𝜙 𝑠
𝜙 𝑠

𝐾 𝐾
𝐶 𝑠 1

𝑅𝐶

𝑠 𝐶 𝐶
𝑅𝐶 𝐶 𝑠 𝐾 𝐾

𝑁𝐶 𝑠 𝐾 𝐾
𝑁𝑅𝐶 𝐶

For Charge Pump PLL:



14GHz PLL Closed-Loop Transfer Function
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Parameter

156.25MHzFref

90N

14GHzFvco

2MHzfu
60°m

3.1MHzf3dB

2π*1GHz/VKvco

4kR

74pFC1

5.8pFC2

310uAIcp

𝐻 𝑠
𝜙 𝑠
𝜙 𝑠

𝐾 𝐾
𝐶 𝑠 1

𝑅𝐶

𝑠 𝐶 𝐶
𝑅𝐶 𝐶 𝑠 𝐾 𝐾

𝑁𝐶 𝑠 𝐾 𝐾
𝑁𝑅𝐶 𝐶



PLL Loop Gain
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in
KVCO

sKPD

1
N

e

Phase Detector

F(s)
Vctrl

fb

out

Loop Filter VCO

Divider

𝐿𝐺 𝑠
𝐾 𝐹 𝑠 𝐾

𝑁𝑠

𝐾 𝐾 𝑠 1
𝑅 𝐶

𝑁𝐶 𝑠 𝑠 𝐶 𝐶
𝑅 𝐶 𝐶

𝜔
1

𝑅 𝐶 , 𝜔 𝜔 0, 𝜔
𝐶 𝐶
𝑅 𝐶 𝐶



Loop Gain Response

71

z u p30

-180° 

-135° m

|LG|(dB)

LG

𝐿𝐺 𝑠
𝐾 𝐾 𝑠 𝜔
𝑁𝐶 𝑠 𝑠 𝜔

Φ tan
𝜔
𝜔 tan

𝜔
𝜔

𝜔 𝜔 0  

𝜔
1

𝑅 𝐶  

𝜔
𝐶 𝐶
𝑅 𝐶 𝐶



Design Procedure for Max m
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z u p30

-180° 

-135° m

|LG|(dB)

LG

Parameter

156.25MHzFref

90N

14GHzFvco

2MHzfu

60°m

2π*1GHz/VKvco

??R

??C1

??C2

??Icp

• Design procedure maximizes phase margin for a given fu
and m specification [Hanumolu TCAS1 2004]

PLL Specs𝐿𝐺 𝑠
𝐾 𝐾 𝑠 𝜔
𝑁𝐶 𝑠 𝑠 𝜔



Design Procedure for Max m
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1. Set loop filter capacitor ratio based on m

𝐾
𝐶
𝐶 2 𝑡𝑎𝑛 Φ 𝑡𝑎𝑛 Φ 𝑡𝑎𝑛 Φ 1

Φ 60° → 𝐾 12.9
2. Set loop filter values based on u & with R set for low noise

𝜔
𝜔

1 𝐾

𝐶
1
𝜔 𝑅 ,   𝐶

𝐶
𝐾

𝜔 2𝜋 ∗ 2𝑀𝐻𝑧 → 𝜔 2𝜋 ∗ 536𝑘𝐻𝑧
Set 𝑅 4𝑘Ω → 𝐶 74𝑝𝐹   &    𝐶 5.8𝑝𝐹

3. Set Icp to achieve required loop gain

𝐼
N𝐶 𝜔
𝐾

𝜔 𝜔
𝜔 𝜔 𝜔 2𝜋 ∗ 7.45𝑀𝐻𝑧 → 𝐼 310𝜇𝐴



Simulated Responses

• Design achieves fu=2MHz and m=60°
• Closed loop response has f3dB=3.1MHz
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𝐿𝐺 𝑠
𝐾 𝐾 𝑠 𝜔
𝑁𝐶 𝑠 𝑠 𝜔

𝜙 𝑠
𝜙 𝑠

𝐾 𝐾
𝐶 𝑠 1

𝑅𝐶

𝑠 𝐶 𝐶
𝑅𝐶 𝐶 𝑠 𝐾 𝐾

𝑁𝐶 𝑠 𝐾 𝐾
𝑁𝑅𝐶 𝐶
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• PLL Linear Model
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• PLL Transient Behavior
• PLL Time Domain Modeling



Common PLL Noise Sources
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sKPD

1
N

e

Phase Detector

F(s)
Vctrl

fb

out

Loop Filter VCO

Divider



Sin SiCP SvR SVCO

𝑆 𝑆 𝑁𝑇𝐹 𝑠

𝑆 𝑆 𝑁𝑇𝐹 𝑠

𝑆 𝑆 𝑁𝑇𝐹 𝑠

𝑆 𝑆 𝑁𝑇𝐹 𝑠

𝑆 𝑆 𝑆 𝑆 𝑆



Noise Transfer Functions

77

𝑁𝑇𝐹 𝑠
𝜙 𝑠
𝜙 𝑠

𝑁 𝐿𝐺 𝑠
1 𝐿𝐺 𝑠

𝑁𝑇𝐹 𝑠
𝜙 𝑠
𝑖 𝑠

𝑁
𝐾 𝐿𝐺 𝑠

1 𝐿𝐺 𝑠

𝑁𝑇𝐹 𝑠
𝜙 𝑠
𝑣 𝑠

𝐾
𝑠

1 𝐿𝐺 𝑠

𝑁𝑇𝐹 𝑠
𝜙 𝑠
𝜙 𝑠

1
1 𝐿𝐺 𝑠

• Input reference and charge pump noise is low-pass filtered
• Loop filter noise (VCO input noise) is band-pass filtered
• VCO output phase noise is high-pass filtered



PLL Phase Noise & Jitter

• PLL time-domain jitter is obtained by 
integrating the output phase noise

78

[Turker ISSCC 2018]

𝜎 ,
2
𝜔

𝑆 𝑓 𝑑𝑓

• We can model an individual 
noise source’s contribution

𝜎 , 𝜎 ,

RMS Jitter 𝜎 𝜎 ,

𝜎 ,
2
𝜔

𝑆 𝑓 𝑁𝑇𝐹 𝑓 𝑑𝑓



Wireline Transceiver Jitter Modeling

• Relative jitter (dynamic phase error) between the RX CDR-generated 
sampling clock and input data sets the system timing margin

• This CDR high-pass response provides additional filtering
• Modeled as a 4MHz 1st-order response (IEEE 802.3 & OIF-CEI)

79

[Richmond SiLabs]

𝜎 ,
2
𝜔

𝑆 𝑓 𝑁𝑇𝐹 𝑓 𝐶𝐷𝑅 𝑓 𝑑𝑓



Input Reference Noise

• Reference jitter j,in = 226fsrms (10kHz – 10MHz)
80

Silicon Labs Ultra Low 
Jitter Crystal Oscillator

Phase Noise at 156.26MHz



Input Reference Noise
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𝑁𝑇𝐹 𝑠

𝐾 𝐾
𝐶 𝑠 1

𝑅𝐶

𝑠 𝐶 𝐶
𝑅𝐶 𝐶 𝑠 𝐾 𝐾

𝑁𝐶 𝑠 𝐾 𝐾
𝑁𝑅𝐶 𝐶

• After PLL: j,in = 217fsrms (10kHz – 10MHz)
• Including CDR: j,in = 45fsrms (100Hz – 7GHz)



Charge Pump Noise

• Charge pump noise current is 
injected into the loop filter during 
the PFD reset time

• Transistor noise PSD convolved 
with pulse frequency spectrum

• White noise scaled by (Trst/Tref) 
and 1/f noise scaled by (Trst/Tref)2
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IN

FB

UP

DN

Tref

Trst
iCP

VBP

UP

DN

VBN

in,MP

MP

in,MN

iCP

MN

Trst=40ps, Tref=6.4ns

𝑆
𝑻𝒓𝒔𝒕
𝑻𝒓𝒆𝒇

𝑆 , , 𝑆 , ,

𝑻𝒓𝒔𝒕
𝑻𝒓𝒆𝒇

𝟐

𝑆
, ,

𝑆
, ,

[Lacaita 2007]

𝜏 𝑇



Charge Pump Noise
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• After PLL: j,CP = 61fsrms (10kHz – 10MHz)
• Including CDR: j,CP = 22fsrms (100Hz – 7GHz)

𝑁𝑇𝐹 𝑠

𝐾
𝐶 𝑠 1

𝑅𝐶

𝑠 𝐶 𝐶
𝑅𝐶 𝐶 𝑠 𝐾 𝐾

𝑁𝐶 𝑠 𝐾 𝐾
𝑁𝑅𝐶 𝐶



Loop Filter R Noise

84

𝑆 4𝑘𝑇𝑅 162𝑑 𝐵 𝐻⁄ 𝑧

w/ 4k Resistor

• Trade-off between resistor noise and loop filter 
capacitor area

Vctrl

R

C1

C2

ICP

ICP

Charging

Discharging

F(s)

UP

DN



Loop Filter R Noise
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• After PLL: j,R = 128fsrms (10kHz – 10MHz)
• Including CDR: j,R = 81fsrms (100Hz – 7GHz)

𝑁𝑇𝐹 𝑠
𝐾 𝑠 𝑠 𝐶 𝐶

𝑅𝐶 𝐶

𝑠 𝐶 𝐶
𝑅𝐶 𝐶 𝑠 𝐾 𝐾

𝑁𝐶 𝑠 𝐾 𝐾
𝑁𝑅𝐶 𝐶



VCO Noise

• LC-VCO phase noise sources
• Finite tank quality factor
• Cross-coupled pair
• Tail current source 86

M1 M2
in,M1 in,M2

in,M3

M3

L1

Rp

in,Rp

C1

Vbias

Vout

LC-Oscillator 
w/ Differential Tank & Noise Sources



VCO Noise
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• After PLL: j,VCO = 257fsrms (10kHz – 10MHz)
• Including CDR: j,R = 125fsrms (100Hz – 7GHz)

𝑁𝑇𝐹 𝑠
𝑠 𝑠 𝐶 𝐶

𝑅𝐶 𝐶

𝑠 𝐶 𝐶
𝑅𝐶 𝐶 𝑠 𝐾 𝐾

𝑁𝐶 𝑠 𝐾 𝐾
𝑁𝑅𝐶 𝐶



Total Noise
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• After PLL: j,Total = 365fsrms (10kHz – 10MHz)
• Reference clock noise dominates at low frequency
• VCO dominates near loop bandwidth and higher

• Including CDR: j,Total = 157fsrms (100Hz – 7GHz)
• Now VCO noise clearly dominates total
• Loop resistor noise is a larger percentage

Jitter 
Variance

PLL Output

After CDR

Ref Clk
35%

Charge Pump
3%

Loop Filter
12%

VCO
50%

Ref Clk
8%

Charge Pump
2%

Loop Filter
27%

VCO
63%



PLL Noise Transfer Function Take-Away Points

• The way a PLL shapes phase noise depends 
on where the noise is introduced in the loop

• Optimizing the loop bandwidth for one noise 
source may enhance other noise sources

• Generally, the PLL low-pass shapes input 
phase noise, band-pass shapes VCO input 
voltage noise, and high-pass shapes 
VCO/clock buffer output phase noise

89
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Linear PLL Model

91

• If the phase input 
amplitude is small, then 
the linear model can be 
used to predict the 
transient response • Ideally, we want this to be zero

• Phase error generally increases with 
frequency due to this high-pass response
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𝑁
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• Phase Step Response
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• Frequency Offset (Step) Response
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• Frequency Ramp Response
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• Phase Step Response
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• Frequency Offset (Step) Response
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• Frequency Ramp Response
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• Phase Step Response
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• Frequency Offset (Step) Response
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Second-Order Type-2 PLL 
Frequency Step Response
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• Frequency Ramp Response
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Second-Order Type-2 PLL 
Frequency Ramp Response
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Ideal Phase Detector

• An ideal phase detector has the 
same gain (slope) over a 2 range

• This allows the linear PLL model to 
be used for all phase relationships
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Real Phase Detectors
• Many phase detectors 

are nonlinear and do 
not display the same 
gain for a given phase 
relationship

• This implies that the 
PLL cannot be 
described by the linear 
model for large input 
phase deviations
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PLL Frequency Step Response:
Linear vs Behavioral Model
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ref(s)=Frequency Step Input: 
s2 = Mrad/sec

32s2

No Cycle Slips Observed
with Linear Model

Cycle Slips

• Due to non-linearities in loop components 
(primarily the PD), a real PLL’s response 
can vary significantly from the linear model



PLL Hold Range (Sinusoidal PD)
• A PLL Hold Range is the input frequency range over which the PLL can 

maintain static lock
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• The hold range is finite for a type-1 PLL, and theoretically infinite for a 
type-2 PLL.  However in practice it will be limited by another PLL block, 
such as the VCO tuning range.



First-Order PLL Phaselock Acquisition 
(Sinusoidal PD)
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First-Order PLL Phaselock Acquisition 
(Sinusoidal PD)
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First-Order PLL Hold Range (Sinusoidal PD)
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First-Order PLL Phaselock Acquisition 
(Sinusoidal PD)

 ee
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 sin
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• Every cycle (2 interval) contains a stable null, thus e
cannot change by more than one cycle before locking

• There is no cycle slipping in the locking process
• A cycle slip occurs when the phase error changes by more 

than 2 without locking
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First-Order PLL Phaselock Acquisition Time 
(Sinusoidal PD)
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• If the frequency offset exceeds the PLL hold 
range, the phase error will oscillate 
asymmetrically as the PLL undergoes cycle slips
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First-Order PLL Lock Failure (Sinusoidal PD)
First-Order PLL VCO Control Voltage

 rad/sec     :Range Hold KH 



Second-Order Type-2 PLL Phaselock
Acquisition (Sinusoidal PD)
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Second-Order Type-2 PLL Phaselock
Acquisition (Sinusoidal PD)
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Second-Order Type-2 PLL Phaselock
Acquisition (Sinusoidal PD)
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• No closed form solution exists, and numerical 
techniques are required to solve



Second-Order Type-2 PLL Phaselock
Acquisition (Sinusoidal PD)
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Second-Order PLL Phase Plane Plots 
(Sinusoidal PD)
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eneene 

• An unstable singularity is 
called a Saddle Point

• A trajectory that terminates on 
a saddle point is called a 
“Separatrix”

• If a trajectory lies between the 
2 separatrices, it will lock 
without cycle slipping

• If a trajectory lies outside the 
2 separatrices, it will cycle 
slippling one or more times 
before locking (if at all)



Second-Order PLL Pull-Out Range and Lock 
Time (Sinusoidal PD)
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• The Pull-Out Range is the maximum frequency step that 
can occur before the loop locks without cycle slipping



Second-Order PLL Locking Outside of the 
Pull-Out Range (Sinusoidal PD)
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• Multiple cycle slips are observed before the loop locks



Agenda
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• PLL Overview
• PLL Linear Model
• PLL Stability
• Analog Charge Pump PLL Design Procedure
• PLL Noise Transfer Functions
• PLL Transient Behavior
• PLL Time Domain Modeling



Time Domain Model
• Time domain models captures the discrete-time operation 

of the PLL architectures
• Interaction between charge pump and loop filter
• Cycle slipping behavior

• Allows modeling of non-linear control systems
• Dynamic loop bandwidth control
• Automatic frequency band selection

• Potential implementation tools
• Matlab Simulink
• CppSim
• Cadence
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Simulink Model
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PFD
Loop Filter



Frequency Step w/ Simulink Model
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• VCO control voltage response to input frequency step
KVCO=2*1GHz/V (LC Osc) KVCO=2*10GHz/V (Ring Osc)

• Voltage spikes due to charge pump current driving loop filter resistor 
• Cycle slipping occurs during lock acquisition due to large initial 

frequency difference



CppSim Model
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• https://cppsim.com/
• C++ based allows for rapid 

simulation of advanced architectures
• Many useful building blocks included

[Perrott/Meninger]



Cadence Verilog-A Model
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VCO (Square Wave) 
Verilog-A Code Snippet



Conclusion
• The way a PLL shapes noise depends on 

where the noise is introduced in the loop

• Optimizing the loop bandwidth for one noise 
source may enhance other noise sources

• Time domain modeling captures loop 
nonlinearities and allows for verification of 
advanced control schemes
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Next Time
• Phase Detector Circuits
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