Texas A\&M University Department of Electrical and Computer Engineering

ECEN 620 - Network Theory (Broadband Circuit Design)

Fall 2023

Exam \#2

Instructor: Sam Palermo

- Please write your name in the space provided below
- Please verify that there are 4 pages in your exam
- You may use one double-sided page of notes and equations for the exam
- Good Luck!

Problem	Score	Max Score
1		50
2		50
Total		100

Name:_SAM PALERMO
URN: \qquad

Problem I (50 points)
A differential ring oscillator is shown below. Assume that all transistors are operating in saturation with $r_{0}=\infty$ and you can ignore any transistor device capacitors. Assume that $\mathrm{C}=100 \mathrm{fF}$ and use the following NMOS parameters

$$
\begin{aligned}
& \text { parameters } \\
& K P_{N}=\mu_{n} C_{01}=600 \mu \mathrm{~A} / \mathrm{V}^{2}, \mathrm{~V}_{\mathrm{TN}}=0.35 \mathrm{~V}, \lambda_{\mathrm{N}}=0 \mathrm{~V}^{-1}
\end{aligned}
$$

a) Assume that for M2 and M3 that $W_{2} / L_{2}=W_{3} / L_{3}$. Determine the sizes (W / L) of M2 and M3 to achieve oscillation.
b) What is the oscillation frequency?
a.

$$
\begin{aligned}
& \text { Each oscillator cell: }\left[\frac{\frac{g_{m 1}}{g_{m 2}}}{1+\frac{s C}{g_{m 2}}}\right]\left[\frac{1}{1+\frac{s c}{g_{m 3}}}\right] \\
& H(s)=\left[\frac{\frac{g_{m 1}}{g_{m 2}}}{1+\frac{s c}{g_{m 2}}}\right]^{2}\left[\frac{1}{1+\frac{s c}{g_{m 3}}}\right]^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { b. Worse }=\frac{9 m_{L}}{C} \\
& =\frac{\sqrt{\mathrm{KPCL} L_{2} 2 I_{0}}}{C} \\
& =\frac{\sqrt{(600 \mu)(25)(2)(0.5 \mathrm{AA})}}{100 \mathrm{fF}} \\
& =38.7 \mathrm{Grod} / \mathrm{s}=6.17 \mathrm{GH}=
\end{aligned}
$$

To oscillate each cell should contribute a phase shift of

$$
\frac{360^{\circ}-180^{\circ}}{2}=90^{\circ}
$$

$$
\text { Since }\left(\frac{w}{L}\right)_{2}=\left(\frac{w}{L}\right)_{3} \text { and } I_{2}=I_{3} \Rightarrow g_{m 2}=9 m 3 \text {. Thus, each cell has }
$$

2 poles that are both at $-\frac{\operatorname{gm} 2}{c}$
\Rightarrow Circuit mill oscillate when each pole gives 45°, which is $W_{2} / L_{2}=W_{3} / L_{3}=\frac{25}{1}$

$$
w_{O S C}=w_{p}=\frac{g_{m 2}}{c}
$$

$$
\mathrm{f}_{\mathrm{osc}}=6.17 \mathrm{GHz}
$$

At worse, the gain is $\frac{g m 1}{g m 2}\left(\frac{1}{\sqrt{2}}\right)\left(\frac{1}{\sqrt{2}}\right)=\frac{g_{m 1}}{2 g_{m 2}}$ which reads to equal 1 .

$$
\frac{g m 1}{2 g_{m L}}=\frac{\sqrt{K P\left(\frac{W}{1}\right)_{1} 2 I_{0}}}{2 \sqrt{K P\left(L V_{2} 2 I_{n}\right.}}=\frac{1}{2} \sqrt{\frac{\left(W / L_{1}\right.}{(W / L)_{2}}}=1 \Rightarrow\left(\frac{W}{L}\right)_{2}=\frac{(W /)_{1}}{4}=\frac{25}{1}
$$

Problem 2 (50 points)
Assume that the limiting amplifier below consists of cascaded identical single-pole amplifier stages, with gain $A_{v s}$ and bandwidth $\omega_{3 d B s}$.

GB $_{\text {tot }}$

a) Design the limiting amplifier to achieve a 34 dB total gain and 20 GHz total bandwidth with the minimum per-stage gain-bandwidth product. Give the stage number and the per-stage gain and bandwidth. Also compute the per-stage gain-bandwidth product.

$$
\begin{aligned}
& n_{o p t}=2 \ln \left(G_{t_{0}+}\right)=2 \ln (50.1)=7.83 \Rightarrow \text { use } 8 \text { stages } \\
& \omega / n=8 \quad A_{u s}=\sqrt[8]{50.1}=1.63 \\
& \begin{aligned}
& W_{3 d B_{+0}+}=\omega_{3 d B}, \sqrt{2^{18}-1} \Rightarrow W_{3 d A_{s}}=\frac{W_{3 d B+t}}{\sqrt{2^{2 / 2-1}}}=\frac{2 \pi\left(20 G \mathrm{~Hz}_{z}\right)}{\sqrt{2^{\prime 8-1}}}=417 \mathrm{drad/5} \\
&=66.56 \mathrm{~Hz}
\end{aligned} \\
& G B \omega_{s}=(1.63)(417 \mathrm{Grad} / \mathrm{s})=680 \mathrm{Grad} / \mathrm{s}=108 \mathrm{GItz} \\
& n=8 \\
& A_{v s}=1.63
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{GBW}_{\mathrm{s}}=680(\mathrm{med} / \mathrm{s}
\end{aligned}
$$

b) Assume that the simple differential amplifier stage shown below can only achieve a (108642) maximum $\mathrm{GBW}_{\mathrm{s}}=70 \mathrm{GHz}$. Propose a change to the stage design below to achieve the required $\mathrm{GBW}_{\mathrm{s}}$ from part (a).
 Add shunt poking inductors

$$
W / L=\frac{R^{2} C}{2.41} \mathrm{can}
$$

increase BW by 72% (GBW to vp ts 120 GH)

W/ no peaking in magnitude
response.

