Texas A&M University Department of Electrical and Computer Engineering

ECEN 620 - Network Theory (Broadband Circuit Design)

Fall 2020

Exam #1

Instructor: Sam Palermo

- Please write your name in the space provided below
- Please verify that there are 6 pages in your exam
- You may use one double-sided page of notes and equations for the exam
- Good Luck!

Problem	Score	Max Score		
1		40		
2	J. 1	60		
Total	Carrie of	100		

Name: S	AM PA	LERMO).	
UIN:				

Problem 1 (40 points)

Select the proper PLL architecture to track a frequency ramp of 10^{12} rad/s² with a steady-state phase error of 0.01 rad. Assume that $K_{VCO}=2\pi*(1GHz/V)$ and that the loop filter utilizes a 1nF capacitor. Additional circuitry should be added to the loop filter to achieve a $\zeta=2$. Give the value of K_{PD} (include correct units), draw the loop filter and label the filter component values.

units), draw the loop filter and label the litter component values.

A 213-Order Type I PLL is required to trock a treplancy ramp

$$E(S) = \frac{S^2}{S^2 + 2l_1 N_1 S + U_n^2}$$

Frequency Ramp: $\phi_{in}(S) = \frac{\Lambda}{S^5}$

$$\phi_{e, 1S} = \frac{l_{in}}{S^3} = \frac{\Lambda}{S^2 + 2l_1 N_1 S + U_n^2} = \frac{\Lambda}{W_1} = 0.01 \text{ rad}$$

$$\Rightarrow U_n = \frac{\Lambda}{\Phi_{e, 1S}} = \frac{\Lambda}{0.01 \text{ rad}} = \frac{10^{77} \text{ rad}}{0.01 \text{ rad}}$$

$$W_n = \sqrt{\frac{KpO kro}{E}}$$

$$K_{pD} = \frac{U_n^2 C}{K_{VLO}} = \frac{(10^{716} M_B^2)^2 (l_n F)}{2\pi (16 He/V)} = \frac{100 \mu A}{2\pi I}$$

$$K_{pD} = \frac{100 \mu A}{2\pi I}$$

$$K_{pD} = \frac{100 \mu A}{2\pi I}$$

$$L_{op} Filter: \frac{1}{2} 400 \pi$$

Problem 2 (60 points)

For the PLL shown below, assume that the VCO gain is K_{VCO} is positive, all transistors are operating in saturation with $r_0=\infty$ and you can ignore any transistor device capacitors.

- a) Draw the phase domain small signal model of the loop.
- b) Find the expressions for the product of the forward path gain and feedback factor, $\frac{G(s)}{N}$, and determine the pole-zero locations of $\frac{G(s)}{N}$.

c) Assume that $I_{CP}=10\mu A$, K=10, $R=50k\Omega$, $K_{VCO}=2\pi*(1GHz/V)$, $g_{m1}=20\mu A/V$ and N=50. What is the C value required for the $\frac{G(s)}{N}$ transfer function zero, ω_z , to equal 1Mrad/s? Sketch the $\frac{G(s)}{N}$ Bode Plot (magnitude and phase). What is the phase margin?

$$C = 2\rho F$$

Phase Margin = 90°

d) What is the phase relationship between ϕ_{in} and ϕ_{fb} when is PLL locked?

Due to the PFO, the loop will lock with a 0° phase difference.

 $\phi_{in} - \phi_{fb} = \bigcirc$

Scratch Paper