ECEN474: (Analog) VLSI Circuit Design Fall 2010

Lecture 26: High-Speed I/O Overview

Sam Palermo Analog & Mixed-Signal Center Texas A&M University

Announcements

- Project
 - Preliminary report due Nov 19
- This lecture is not covered in exam 3

Outline

- Introduction
- Electrical I/O Overview
 - Channel characteristics
 - Transmitter & receiver circuits
 - Clocking techniques & circuits
- Future trends & optical I/O
- Conclusion

ECEN 689: Special Topics in High-Speed Links Circuits and Systems

- Spring 2011
- http://www.ece.tamu.edu/~spalermo/ecen689.html
- Covers system level and circuit design issues relevant to high-speed electrical and optical links
- Channel Properties
 - Modeling, measurements, communication techniques
- Circuits
 - Drivers, receivers, equalizers, clocking
- Project
 - Link system design with statistical BER analysis tool
 - Circuit design of key interface circuits
- Prerequisite: ECEN 474 or my approval

Desktop Computer I/O Architecture

- Many high-speed I/O interfaces
- Key bandwidth bottleneck points are memory (FSB) and graphics interfaces (PCIe)
- Near-term architectures
 - Integrated memory controller with serial I/O (>5Gb/s) to memory
 - Increasing PCIe from 2.5Gb/s (Gen1) to 8Gb/s (Gen3)
- Other serial I/O systems
 - Multi-processor systems
 - Routers

Serial Link Applications

- Processor-to-memory
 - RDRAM (1.6Gbps), XDR DRAM (7.2Gbps), XDR2 DRAM (12.8Gbps)
- Processor-to-peripheral
 - PCIe (2.5, 5, 8Gbps), Infiniband (10Gbps), USB3 (4.8Gbps)
- Processor-to-processor
 - Intel QPI (6.4Gbps), AMD Hypertransport (6.4Gbps)
- Storage
 - SATA (6Gbps), Fibre Channel (20Gbps)
- Networks
 - LAN: Ethernet (1, 10Gbps)
 - WAN: SONET (2.5, 10, 40Gbps)
 - Backplane Routers: (2.5 12.5Gbps)

Chip-to-Chip Signaling Trends

Slide Courtesy of Frank O'Mahony & Brian Casper, Intel

Increasing I/O Bandwidth Demand

- Single \Rightarrow Multi \Rightarrow Many-Core μ Processors
- Tera-scale many-core processors will aggressively drive aggregate I/O rates

Intel Teraflop Research Chip

- 80 processor cores
- On-die mesh interconnect network w/ >2Tb/s aggregate bandwidth
- 100 million transistors •
- 275mm²

S. Vangal et al, "An 80-Tile Sub-100W TeraFLOPS Processor in 65nm CMOS," JSSC, 2008.

*2006 International Technology Roadmap for Semiconductors

ITRS Projections*

Outline

- Introduction
- Electrical I/O Overview
 - Channel characteristics
 - Transmitter & receiver circuits
 - Clocking techniques & circuits
- Future trends & optical I/O
- Conclusion

High-Speed Electrical Link System

Electrical Backplane Channel

- Frequency dependent loss
 - Dispersion & reflections
- Co-channel interference
 - Far-end (FEXT) & near-end (NEXT) crosstalk

Loss Mechanisms

 Dispersion V(X) ► X Z₀ Z₀ R₀ $\frac{V(x)}{V(x)} = e^{-(\alpha_R + \alpha_D)x}$ - Skin effect, α_{R} Skin Depth, $\delta_{\rm sd} = \left(\frac{\rho}{\mu\pi f}\right)^{1/2}$ **Dispersion Loss** 1.0 Dielectric loss 0.8 Skin Effect $\alpha_{R} = \frac{R_{AC}}{2Z_{0}} = \frac{\rho L}{\delta_{sd} \pi D 2Z_{0}} = \frac{2.61 \times 10^{-7}}{\pi D 2Z_{0}} \sqrt{f}$ Sum 0.6 0.4 Measured 0.2 - Dielectric loss , α_{D} $\alpha_D = \frac{\pi \sqrt{\varepsilon_r} \tan \delta_D}{c} f$ 10MHz 1MHz 100MHz 1GHz 1m 8mil 50 Ω stripguide with GETEK dielectric

B. Dally et al, "Digital Systems Engineering,"

Reflections

Crosstalk

- Occurs mostly in package and boardto-board connectors
- FEXT is attenuated by channel response and has band-pass characteristic
- NEXT directly couples into victim and has high-pass characteristic

Channel Performance Impact

 (\geq)

Voltage

Channel Performance Impact

 \geq

Outline

- Introduction
- Electrical I/O Overview
 - Channel characteristics
 - Transmitter & receiver circuits
 - Clocking techniques & circuits
- Future trends & optical I/O
- Conclusion

Link Speed Limitations

- High-speed links can be limited by both the internal electronics and the channel
- Clock generation and distribution is key circuit bandwidth bottleneck
 - Requires data mux/demux to use multiple clock phases
 - Passives and/or CML techniques can extend circuit bandwidth at the expense of area and/or power
- Limited channel bandwidth is typically compensated with equalization circuits

^{*}C.-K. Yang, "Design of High-Speed Serial Links in CMOS," 1998.

Multiplexing Techniques

- Data mux/demux operation typically employs multiple clock phases
- ½ rate architecture (DDR) is most common
 - Sends a bit on both the rising and falling edge of one differential clock
 - 50% duty cycle is critical
- Higher multiplexing factors with multiple clock phases further increases output data rate relative to on-chip clock frequency
 - Phase spacing/calibration is critical

8:1 Multiplexing TX*

*C.-K. Yang, "Design of High-Speed Serial Links in CMOS," 1998.

Current vs Voltage-Mode Driver

- Signal integrity considerations (min. reflections) requires 50Ω driver output impedance
- To produce an output drive voltage
 - Current-mode drivers use Norton-equivalent parallel termination
 - Easier to control output impedance
 - Voltage-mode drivers use Thevenin-equivalent series termination
 - Potentially ½ to ¼ the current for a given output swing

TX FIR Equalization

 TX FIR filter pre-distorts transmitted pulse in order to invert channel distortion at the cost of attenuated transmit signal (de-emphasis)

6Gb/s TX FIR Equalization Example

6Gb/s Pulse Responses

- Pros
 - Simple to implement
 - Can cancel ISI in precursor and beyond filter span
 - Doesn't amplify noise
 - Can achieve 5-6bit resolution
- Cons
 - Attenuates low frequency content due to peak-power limitation
 - Need a "back-channel" to tune filter taps

Demultiplexing RX

- Input pre-amp followed by comparator segments
 - Pre-amp may implement peaking filtering
 - Comparator typically includes linear-amp & regenerative (positive feedback) latch
- Demultiplexing allows for lower clock frequency relative to data rate and extra regeneration and pre-charge time in comparators

RX Sensitivity

 RX sensitivity is a function of the input referred noise, offset, and min latch resolution voltage

 $v_{S}^{pp} = 2v_{n}^{rms}\sqrt{SNR} + v_{min} + v_{offset^{*}}$ Typical Values : $v_{n}^{rms} = 1mV_{rms}$, $v_{min} + v_{offset^{*}} < 2mV$ For BER = 10^{-12} ($\sqrt{SNR} = 7$) $\Rightarrow v_{S}^{pp} = 17mV_{pp}$

 Circuitry is required to reduce input offset from a potentially large uncorrected value (>50mV) to near 1mV

RX Equalization #1: RX FIR

- Pros
 - With sufficient dynamic range, can amplify high frequency content (rather than attenuate low frequencies)
 - Can cancel ISI in pre-cursor and beyond filter span
 - Filter tap coefficients can be adaptively tuned without any back-channel
- Cons
 - Amplifies noise/crosstalk
 - Implementation of analog delays
 - Tap precision

Eye-Pattern Diagrams at 1Gb/s on CAT5e*

Before Equalizer: 23meters

After Equalizer: 23meters

*D. Hernandez-Garduno and J. Silva-Martinez, "A CMOS 1Gb/s 5-Tap Transversal Equalizer based on 3rd-Order Delay Cells," ISSCC, 2007.

RX Equalization #2: RX CTLE

0.3

0.1

-0.1

-0.2

-0.3

-0.4

-0.5<mark>L</mark>

50

100

150

Time (ps)

200

250

300

 (\mathbf{v}) 0.2

Voltage

- ٠
 - power and area overhead
 - Can cancel both precursor and long-tail ISI
- Cons ٠
 - Generally limited to 1st order compensation
 - Amplifies noise/crosstalk
 - **PVT** sensitivity
 - Can be hard to tune

RX Equalization #3: RX DFE

- Pros
 - No noise and crosstalk amplification
 - Filter tap coefficients can be adaptively tuned without any back-channel
- Cons
 - Cannot cancel precursor ISI
 - Critical feedback timing path
 - Timing of ISI subtraction complicates CDR phase detection

6Gb/s Eye - Refined BP Channel w/ No Eq

0.5

0.4

0.3

0.2

0.1

-0.1

-0.2

-0.3

-0.4

-0.5<mark>L</mark>

50

100

150

Time (ps)

200

Voltage (V)

Outline

- Introduction
- Electrical I/O Overview
 - Channel characteristics
 - Transmitter & receiver circuits
 - Clocking techniques & circuits
- Future trends & optical I/O
- Conclusion

Clocking Architecture #1 Source Synchronous Clocking

*S. Sidiropoulos, "High Performance Inter-Chip Signalling," 1998.

- Common high-speed reference clock is forwarded from TX chip to RX chip
- "Coherent" clocking allows high frequency jitter tracking
 - Jitter frequency lower than delay difference (typically less than 10bits) can be tracked
 - Allows power down of phase detection circuitry
 - Only periodic acquisition vs continuous tracking
- Requires one extra clock channel
- Need good clock receive amplifier as the forwarded clock can get attenuated by the low pass channel
- Low pass channel causes jitter amplification

Clocking Architecture #2 Embedded Clocking (CDR)

- Clock frequency and optimum phase position are extracted from incoming data stream
- Phase detection continuously running
- Jitter tracking limited by CDR bandwidth
 - With technology scaling we can make CDRs with higher bandwidths and the jitter tracking advantages of source synchronous systems is diminished
- CDR can be implemented as a stand-alone PLL or as a "dual-loop" architecture with a PLL or DLL and phase interpolators (PI)

Phase-Locked Loop (PLL)

*J. Bulzacchelli et al, "A 10Gb/s 5Tap DFE/4Tap FFE Transceiver in 90nm CMOS Technology," JSSC, 2006.

- Used for frequency synthesis at TX and embedded-clocked RX
- Second/third order loop
 - Charge pump & integrating loop filter produces voltage to control VCO frequency
 - Output phase is integration of VCO frequency
 - Zero required in loop filter for stability
- Low-noise VCO (or high BW PLL) required to minimize jitter accumulation

Delay-Locked Loop (DLL)

- Typically used to generate multiple clock phases in RX
- First order loop guarantees stability
- Delay line doesn't accumulate jitter like a VCO
- Difficult to use for frequency synthesis

Phase Interpolator (PI)

*J. Bulzacchelli et al, "A 10Gb/s 5Tap DFE/4Tap FFE Transceiver in 90nm CMOS Technology," JSSC, 2006.

- Interpolators mix between two clock phases to produce the fine resolution clock phases used by the RX samplers
- Critical to limit bandwidth of PI mixing node for good linearity
 - Hard to design over wide frequency range without bandwidth adjustment and/or input slew-rate control

Clock Distribution

- Careful clock distribution is required in multichannel I/O systems
- Different distribution architectures tradeoff jitter, power, area, and complexity

*J. Poulton et al, "A 14mW 6.25Gb/s Transceiver in 90nm CMOS," JSSC, 2007.

Architecture	Jitter	Power	Area	Complexity
Inverter	Moderate	Moderate	Low	Low
CML	Good	High	Moderate	Moderate
T-line	Good	Low	Low	Moderate
Resonant T-line	Excellent	Low	High	High

Outline

- Introduction
- Electrical I/O Overview
 - Channel characteristics
 - Transmitter & receiver circuits
 - Clocking techniques & circuits
- Future trends & optical I/O
- Conclusion

It's about the Energy Efficiency, ...

- Energy efficiency is paramount
 - Emphasis shifting away from maximizing Gb/s to minimizing mW/Gb/s or pJ/bit
- Current commercial high-speed links are ~10mW/Gb/s
- Research caliber links can achieve 1-3mW/Gb/s at 5-10Gb/s
 - Emphasis on adaptive voltage scaling, digital calibration techniques, refining electrical channel
- Need to achieve sub-1mW/Gb/s at data rates ~10Gb/s
- Future systems are projected at even higher data rates (20+ Gb/s)
 - Can we still do electrical?

I/O Power Efficiency vs Year

Other Trends

- Can we do better than simple NRZ modulation?
 - Multi-level (4/8-PAM)
 - Multi-tone
 - Duo-binary
- Active crosstalk cancellation
 - Package constraints require high density and high data rate
- ADC-based RX front-ends
 - Get to digital ASAP
 - Allows improved SNR front-ends, but probably doesn't save power

Chip-to-Chip Optical Interconnects

- Optical interconnects remove many channel limitations
 - Reduced complexity and power consumption
 - Potential for high information density with wavelength-division multiplexing (WDM)

*S. Palermo *et al*, "A 90nm CMOS 16Gb/s Transceiver for Optical Interconnects," JSSC, 2008.

Conclusion

- High-speed I/O systems offer challenges in both circuit and communication system design
 - High-speed TX/RX, low jitter clocking, and efficient equalizer circuits
- Key issue with scaling high-speed I/O is meeting the energy efficiency targets required by future systems (→1mW/Gb/s)
 - Requires circuit improvements and constant electrical channel refinement
 - Optical I/O is a major candidate in this space

Interested In Research In This Area?

- Graduate Students
 - Take the 689 class
- Undergraduate Students
 - Opportunities exist for undergraduate research credits (491)