Announcements & Agenda

- HW4 due Wednesday 10/31
- Exam 2 Friday 11/2
- Simple OTA Review
- Three Current Mirror OTA Parameters
- Three Current Mirror OTA w/ Cascode Output
Operational Transconductance Amplifier

Transconductance \(G_m = g_{m1} = \sqrt{\frac{KP_n}{L_1}} \frac{W}{I_{TAIL}} \)

Output Conductance \(g_{out} = g_{o2} + g_{o6} = \frac{I_{TAIL}}{2} (\lambda_n + \lambda_p) \)

DC Gain \(A_v = G_m R_{out} = \frac{g_{m1}}{g_{o2} + g_{o6}} = \frac{2}{\lambda_n + \lambda_p} \sqrt{\frac{KP_n W}{I_{TAIL} L_1}} \)

Dominant Pole \(\omega_{p1} = \frac{g_{o2} + g_{o6}}{C_L} \)

Non-Dominant Pole \(\omega_{p2} = \frac{g_{m6}}{C_M} \approx \frac{g_{mg}}{2C_{gs6}} \)

Output Noise Current \(i_{on}^2 = 2 \left(\frac{8}{3} kT \right) (g_{m1} + g_{m6}) \)

Input Noise Voltage \(v_{in}^2 = 2 \left(\frac{8}{3} kT \right) \left(\frac{1}{g_{m1}} \right) \left(1 + \frac{g_{m6}}{g_{m1}} \right) \)

Gain Bandwidth \(GBW = \frac{G_m}{C_L} = \sqrt{\frac{KP_n}{L_1}} \frac{W}{I_{TAIL}} \frac{I_{TAIL}}{C_L} \)

Slew Rate \(SR = \frac{I_{tail}}{C_L} \)
Basic Operational Transconductance Amplifier Topologies

(a) (b)

SINGLE-ENDED

(c) (d)

FULLY-DIFFERENTIAL
3 Current Mirror OTA

- Relative to Simple OTA
 - Factor of “B” increase in G_m, GBW, and SR
 - Same A_v
 - Slightly higher noise
 - Lower frequency non-dominant pole and third pole
 - $(B+1)$ times the power
OTA based on 3 current mirrors

Transconductance \(G_m = B g_{m1} = B \sqrt{\frac{K P_n}{L_1}} I_{TAIL} \)

Output Conductance \(g_{out} = g_{on} + g_{op} \approx \frac{B I_{TAIL}}{2} \left(\lambda_n + \lambda_p \right) \)

DC Gain \(A_v = G_m R_{out} = \frac{B g_{m1}}{g_{on} + g_{op}} = \frac{2 \sqrt{\frac{K P_n}{I_{TAIL}}} W}{\lambda_n + \lambda_p} \)

Dominant Pole \(\omega_{p1} = \frac{g_{on} + g_{op}}{C_L} \)

Non-Dominant Pole \(\omega_{p2} = \frac{g_{mp}}{C_{Mp}} \approx \frac{g_{mp}}{(1 + B)C_{gsp}} \)

Gain-Bandwidth \(GBW = \frac{G_m}{C_L} = \frac{B \sqrt{KP_n W I_{TAIL}}}{C_L} \)

Slew Rate \(SR = \frac{BI_{tail}}{C_L} \)
OTA based on 3 current mirrors

Transconductance \(G_m = B g_{m1} = B \sqrt{\frac{K P_n}{L_1}} I_{TAIL} \)

Output Conductance \(g_{out} = g_{on} + g_{op} = \frac{B I_{TAIL}}{2} \left(\lambda_n + \lambda_p \right) \)

DC Gain \(A_v = G_m R_{out} = \frac{B g_{m1}}{g_{on} + g_{op}} = \frac{2 \sqrt{K P_n W}}{I_{TAIL} L_1} \frac{\lambda_n + \lambda_p}{\lambda_n + \lambda_p} \)

Dominant Pole \(\omega_{p1} = \frac{g_{on} + g_{op}}{C_L} \)

Non-Dominant Pole \(\omega_{p2} = \frac{g_{mp}}{C_{Mp}} \approx \frac{g_{mp}}{(1 + B)C_{gsp}} \)

Gain-Bandwidth \(GBW = \frac{G_m}{C_L} = \frac{B \sqrt{K P_n W}}{L_1 C_L} \)

Slew Rate \(SR = \frac{B I_{tail}}{C_L} \)
Output Noise Current $i_{on}^2 = 2\left(\frac{8}{3}kT\right)\left(B^2g_{m1} + B^2g_{mp} + Bg_{mp} + g_{mn}\right)$

Input Noise Voltage $v_{in}^2 = 2\left(\frac{8}{3}kT\right)\left(\frac{1}{g_{m1}}\right)\left(1 + \frac{g_{mp}}{g_{m1}}\left(1 + \frac{1}{B}\right) + \frac{g_{mn}}{B^2g_{m1}}\right)$
3 Current Mirror OTA w/ Cascode Output

- Relative to 3 Current Mirror OTA
 - Same G_m, GBW, and SR
 - A_v increased by cascode $g_{mc}r_{oc}$ factor
 - Approximately same noise
 - Introduce two additional cascode non-dominant poles
 - Same power
Small Signal Analysis: Common-source Cascode Amplifier

AC analysis:

POLE AT V_Y

\Rightarrow Non-dominant pole: \approx

$\Rightarrow \omega_{PND} = \frac{g_{m1} + g_{mb11}}{C_{PY}}$

\Rightarrow Dominant pole at $1/ R_{OUT} C_{OUT}$

\Rightarrow Transfer function

$$\frac{vout}{vin} = \left(-\frac{g_{m1}}{g_{out}} \right) \left(\frac{1}{1 + s \frac{C_{out}}{g_{out}}} \right) \left(\frac{1}{1 + s \frac{C_{PY}}{g_{m1} + g_{mb11}}} \right)$$
Small Signal Analysis: Noise Level

Input referred Noise:

\[\frac{i_{d1}}{v_{n11}} = \left(-\frac{g_{m11}}{1 + g_{m11}Z_{01}} \right) \]

\[v_{eqin,11}^2 = \frac{\left(\frac{g_{m11}}{1 + g_{m11}Z_{01}} \right)^2}{\frac{g_{m1}}{2} - \frac{1}{Z_{01}^2}} v_{n,11}^2 \]

For \(g_{m11}Z_{01} \gg 1 \)

\[v_{eqin,11}^2 = \frac{1}{\frac{g_{m1}}{2}Z_{01}^2} v_{n,11}^2 \]

In general \(Z_{01} = R_{01} \parallel 1/sC_{01} \)

\[\frac{(g_{m11}/g_{m1})^2 V_{n,11}}{2} \]

\[\frac{(g_{01}/g_{m1})^2 V_{n,11}}{2} \]

\[g_{m11}Z_{01} \ll 1 \]

\[g_{m11}Z_{01} \gg 1 \]

\[\frac{g_{m11}}{g_{m1}} \]

\[\frac{g_{01}}{C_{01}} \]

\[\omega \text{ (rad/sec)} \]

- Cascode transistor noise can generally be neglected
OTA based on 3 current mirrors using cascode transistors

Transconductance \(G_m = B g_{m1} = B \sqrt{K P_n W} L_1 I_{TAIL} \)

Output Conductance \(g_{out} = \frac{g_{on}}{g_{mcn} r_{onen}} + \frac{g_{op}}{g_{mcp} r_{ocp}} \approx \frac{BI_{TAIL}}{2 g_{me} r_{oc}} \left(\lambda_n + \lambda_p \right) \)

DC Gain \(A_v = G_m R_{out} = \frac{B g_{m1} g_{mc} r_{oc}}{g_{on} + g_{op}} = \frac{2 \sqrt{K P_n W}}{\lambda_n + \lambda_p} \left(g_{mc} r_{oc} \right) \)

Dominant Pole \(\omega_{p1} = \frac{g_{on} + g_{op}}{g_{mc} r_{oc} C_L} \)

Non-Dominant Pole \(\omega_{p2} = \frac{g_{mp}}{C_{Mp}} \approx \frac{g_{mp}}{(1+B)C_{gsp}} \)

Gain-Bandwidth \(GBW = \frac{G_m}{C_L} = \frac{B \sqrt{K P_n W}}{L_1} I_{TAIL} \)

Slew Rate \(SR = \frac{BI_{tail}}{C_L} \)
3 Current Mirror OTA Noise

Output Noise Current \(i_{on}^2 = 2 \left(\frac{8}{3} kT \right) \left(B^2 g_{m1} + B^2 g_{mp} + B g_{mp} + g_{mn} \right) \)

Input Noise Voltage \(v_{in}^2 = 2 \left(\frac{8}{3} kT \right) \left(\frac{1}{g_{m1}} \right) \left(1 + \frac{g_{mp}}{g_{m1}} \left(1 + \frac{1}{B} \right) + \frac{g_{mn}}{B^2 g_{m1}} \right) \)

- Cascode transistor contribution can be neglected
- Approximately equal to 3 current mirror OTA noise
OTA based on 3 current mirrors using cascode transistors

\[A_v \approx \frac{B g_{m1} R_{out}}{2} \frac{1}{1 + s (1 + B) C_{GSP} g_{mP}} \left[1 + s \left(\frac{1 + \Delta}{(1 + \Delta) C_{GSCP} g_{mcp}} + \frac{1}{1 + s \left(\frac{1}{1 + \Delta} C_{GSCN} g_{mcn}} + \frac{1}{1 + s \frac{2 C_{GSN}}{g_{mN}}}}\right) \right] \]

Phase Margin is limited
OTA based on 3 current mirrors using cascode transistors

Excess Phase is defined as (phase at 0 - phase at ω_u)

Phase Margin = (180 – excess phase)

Gain margin = Gain measured at 180° excess phase
Next Time

- Folded Cascode OTA
- Two Stage Miller OTA