Announcements & Agenda

• Reading
 • Razavi Chapter 5

• Biasing in ICs
• Simple Current Mirror
• Cascode Current Mirror
• Low-Voltage Cascode Current Mirror
Current Source Properties

- **Output Resistance**
 - Finite output resistance degrades current source accuracy and amplifier gain

- **Other important properties:**
 - Voltage headroom (compliance voltage)
 - Accuracy
 - Noise
How Should We Bias Our Circuits?

• Resistive Biasing
 • Assuming saturation
 \[I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_G - V_{Tn})^2 \]

 \[= \frac{1}{2} \mu_n C_{ox} \frac{W}{L} \left(\frac{R_{G2}}{R_{G1} + R_{G2}} V_{dd} - V_{Tn} \right)^2 \]

• \(I_D \) is sensitive to
 • Supply (Vdd)
 • Process (\(V_{Tn} \) and \(\mu_n C_{ox} W/L \))
 • Temperature (\(V_{Tn} \) and \(\mu_n \))
IC Biasing

• In IC design we often assume that we have **one** precise current source and we copy its value to our circuits
Simple Current Mirror

- That copy circuit is a current mirror
- Simple Current Mirror

\[I_D = I_{\text{REF}} = \frac{1}{2} \mu_n C_{\text{ox}} \left(\frac{W}{L} \right)_1 (V_G - V_{Tn})^2 \]

\[V_G = \sqrt{\frac{2 I_{\text{REF}}}{\mu_n C_{\text{ox}} \left(\frac{W}{L} \right)_1}} + V_{Tn} \]

- If VG is applied to another transistor

\[I_{\text{out}} = \frac{1}{2} \mu_n C_{\text{ox}} \left(\frac{W}{L} \right)_2 \left(\sqrt{\frac{2 I_{\text{REF}}}{\mu_n C_{\text{ox}} \left(\frac{W}{L} \right)_1}} + V_{Tn} - V_{Tn} \right)^2 \]

\[I_{\text{out}} = \left(\frac{W}{L} \right)_2 I_{\text{REF}} \]
Ideal Current Mirror Example

- This bias scheme reduces sensitivity to process, voltage, and temperature variations

\[I_1 = 1 \text{mA} \]
\[I_2 = 1 \text{mA} \]
\[I_3 = 0.5 \text{mA} \]
\[I_4 = 1.5 \text{mA} \]
What is I_D?

- Need to insure that M3 remains in saturation

\[
V_s = V_G - \left(V_{\text{ovl}} + V_{Tn} \right) = \left(\frac{R_{G2}}{R_{G1} + R_{G2}} \right) V_{dd} - \left(\sqrt{\frac{2I_D}{\mu_n C_{ox} \left(\frac{W}{L} \right)_1}} + V_{Tn} \right)
\]
Small-Signal Output Resistance: Simple Current Mirror/Source (Finite r_o)

- A simple current mirror/source has an output resistance equal to a single transistor r_o
- In order to maintain a high output impedance we need a minimum output compliance voltage

| Compliance Voltage $= V_{DSAT2} = V_{GS2} - V_{T2}$ |

$\text{Compliance Voltage} = V_{DSAT2} = V_{GS2} - V_{T2}$
Simple Current Mirror Accuracy

While \(V_{DS1} = V_{GS1} = V_{GS2} \), \(V_{DS2} \) may not equal \(V_{DS1} \)
- This causes an error in the mirroring ratio

To improve accuracy we can (a) force \(V_{DS2} \) to be equal to \(V_{DS1} \) (Cascode Current Mirror), or (b) force \(V_{DS1} \) to be equal to \(V_{DS2} \) (Low-Voltage Cascode Current Mirror)

\[
\begin{align*}
I_{D1} &= \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L} \right)_1 (V_{GS} - V_{TH})^2 (1 + \lambda V_{DS1}) \\
I_{D2} &= \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L} \right)_2 (V_{GS} - V_{TH})^2 (1 + \lambda V_{DS2})
\end{align*}
\]

\[
\frac{I_{D2}}{I_{D1}} = \frac{(W/L)_2}{(W/L)_1} \cdot \frac{1 + \lambda V_{DS2}}{1 + \lambda V_{DS1}}
\]
Cascode Current Mirror

- A cascode device can shield a current source, thereby reducing the voltage variations across it.
- But, how do we ensure that $V_{DS2} = V_{DS1}$?
- We can generate V_b such that $V_b - V_{GS3} = V_{DS1}(= V_{GS1})$ with a stacked diode connected transistor.
MOS Cascode Topology Output Resistance

\[v_x = i_o r_o 1 \]

Writing a KCL at the output node

\[-i_o + g_m 3 (-v_x) + \frac{v_o - v_x}{r_o 3} = 0 \]

\[-i_o - g_m 3 i_o r_o 1 - \frac{i_o r_o 1}{r_o 3} = -\frac{v_o}{r_o 3} \]

\[R_{out} = \frac{v_o}{i_o} = r_o 3 + r_o 1 + g_m 3 r_o 3 r_o 1 \approx g_m 3 r_o 3 r_o 1 \]

The dominant term is the bottom effective resistance boosted by the gain of the top transistor \(g_m 3 r_o 3 \)
Cascode Current Mirror Compliance Voltage

- What is the minimum output voltage V_p such that all the output transistors remain in saturation?

$$V_p = V_Y + V_{DSAT3} = V_{GS1} + V_{GS3} - V_T$$

Compliance Voltage = $V_{GS1} + V_{DSAT3}$

- Note that this output stage biasing technique “wastes” one threshold voltage, as V_Y could potentially be lower by a V_T and M_2 would still be in saturation.
How Can We Get a Lower Compliance Voltage?

• The left figure uses the minimum possible V_b such that M_2 and M_3 remain in saturation
 • However, as $V_X \neq V_Y$, the output current does not accurately track I_{REF}

• The right figure (our original cascode current mirror) achieves good accuracy, but again wastes a threshold voltage relate to the left figure
Low-Voltage Cascode Current Mirror

- M2 and M4 should be sized such that
 - $V_{GS2} = V_{GS4}$
- M1 and M3 biased near edge of saturation
 - $V_{DS1} \approx V_{DS3} \approx V_{DSAT}$
 - $V_b = V_{GS2} + (V_{GS1} - V_{T1}) = V_{GS4} + (V_{GS3} - V_{T3})$

Compliance Voltage $= V_{DSAT3} + V_{DSAT4}$
Alternative V_b Generation

- Saves one current branch
- M5 sized such that $V_{GS5} \approx V_{GS2}$
 - Some body effect error here
- Size M6 and Rb such that
 - $V_{DS6} = V_{GS6} - R_b I_1 \approx V_{GS1} - V_{T1}$
Next Time

- Table-Based Design