PSpice Hints for Project

PSpice Transient and Fourier Analysis Settings

In the schematic window: Analysis -> Setup -> Transient

ſ	Transient 🛛 🔍						
	Transient Analysis						
L	Print Step:						
	Final Time: 10ms						
Ľ	No-Print Delay:						
H	Step Ceiling: 1us						
	🔽 Detailed Bias Pt.						
	Skip initial transient solution						
L	Fourier Analysis	1					
1	Enable Fourier						
1	Center Frequency: 10e3						
1	Number of harmonics: 5	re					
	Output Vars.: V(Vo)	et					
	OK Cancel						
1							

Print Step = 1us This is the time between points in the output data file if you print the waveform out.

Final Time = 10ms I use 100 cycles to let initial transients die out and get an accurate frequency spectrum

Step Ceiling = 1us This forces the maximum simulation time step to this value. A good number to use is 100points per cycle. With a 10kHz input, this is a print step of 1us.

Center Frequency = 10e3 The fundamental frequency used in the Fourier Analysis. For a linear amplifier, set this to your input source (10kHz).

Number of harmonics = 5 The number of harmonics used in the Fourier Analysis. Use 5 or more.

Output Vars = Your output waveform

Viewing PSpice Output File

In "results" window View -> Output File

Example of Power Dissipation Output

TOTAL POWER DISSIPATION 3.95E-04 WATTS

Example of Fourier Analysis Output

FOURIER COMPONENTS OF TRANSIENT RESPONSE V(Vo)

DC COMPONENT = -1.817060E-05

HARM	ONIC FREC	QUENCY FO	URIER NOF	RMALIZED I	PHASE	NORMALIZED
NO	(HZ) C	COMPONENT	COMPON	ENT (DEG)	PHASE	(DEG)
1	1.000E+04	2.273E-02	1.000E+00	1.795E+02	0.000E+(00
2	2.000E+04	1.462E-05	6.433E-04	2.901E+01	-3.301E+0)2
3	3.000E+04	1.164E-05	5.121E-04	1.718E+02	-3.669E+0)2
4	4.000E+04	1.168E-05	5.139E-04	2.415E+01	-6.940E+0)2
5	5.000E+04	1.084E-05	4.771E-04	-1.235E+02	-1.021E+()3

TOTAL HARMONIC DISTORTION = 1.080592E-01 PERCENT