ECEN325: Electronics
Summer 2018

Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET)

Sam Palermo
Analog & Mixed-Signal Center
Texas A&M University
Announcements & Reading

• HW5 due today
• Exam 2 on July 20

• MOSFET Reading
 • Razavi Ch6 – MOSFET Models
 • Razavi Ch7 – MOSFET Amplifiers
MOSFET Circuit Symbols

NMOS

- MOSFETs are 4-terminal devices
 - Drain, Gate, Source, & Body
- Body terminal generally has small impact in normal operation modes, thus device is generally considered a 3-terminal device
 - Drain, Gate, and Source are respectively similar to the Collector, Base, and Emitter of the BJT
- 2 complementary MOSFETS: NMOS, PMOS

PMOS

- MOSFETs are 4-terminal devices
 - Drain, Gate, Source, & Body
- Body terminal generally has small impact in normal operation modes, thus device is generally considered a 3-terminal device
 - Drain, Gate, and Source are respectively similar to the Collector, Base, and Emitter of the BJT
- 2 complementary MOSFETS: NMOS, PMOS

\[v_G \rightarrow v_D \quad i_D = i_S \quad i_B = 0 \]
\[v_S \rightarrow v_B \quad i_S = i_D \]

\[v_G \rightarrow v_S \quad i_G = 0 \quad i_S = i_D \quad i_B = 0 \]
\[v_D \rightarrow v_B \quad i_D = i_S \]
NMOS Physical Structure

- **Source (S)**
- **Gate (G)**
- **Drain (D)**
- **Polysilicon**
- **Body (B)**

[Karsilayan]
CMOS Physical Structure

[Karsilayan]
The threshold voltage, V_{TH}, is the voltage at which an “inversion layer” is formed.

For an NMOS this is when the concentration of electrons equals the concentration of holes in the p^- substrate.
The incremental channel charge density is equal to the gate capacitance times the gate-channel voltage in excess of the threshold voltage.

\[Q = WC_{ox}(V_{GC} - V_{TH}) \]

where Capacitance per unit gate area: \(C_{ox} = \frac{\varepsilon_{ox}}{t_{ox}} \)
Let x be a point along the channel from source to drain, and $V(x)$ its potential; the expression above gives the charge density (per unit length).

\[
Q(x) = WC_{ox} \left[V_{GS} - V(x) - V_{TH} \right]
\]
Drain Current Derivation: Charge Density and Current

The current that flows from source to drain (electrons) is related to the charge density in the channel by the charge velocity.

$\mathbf{I = Q \cdot v}$

[Razavi]
Drain Current Derivation:

Triode Region (Small \(V_{DS} \)) Current Equation

\[
V = +\mu_n \frac{dV}{dx}
\]

\[
I_D = Q(x)v = WC_{ox}[V_{GS} - V(x) - V_{TH}]\mu_n \frac{dV(x)}{dx}
\]

\[
\int_{x=0}^{x=L} I_D dx = \int_{V(x)=0}^{V(x)=V_{DS}} \mu_n C_{ox} W[V_{GS} - V(x) - V_{TH}]dV(x)
\]

\[
I_D = \mu_n C_{ox} \frac{W}{L} \left[V_{GS} - V_{TH} - \frac{1}{2}V_{DS} \right] V_{DS}
\]
Triode or Linear Region

- Channel depth and transistor current is a function of the overdrive voltage, $V_{GS} - V_T$, and V_{DS}
- Because V_{DS} is small, V_{GC} is roughly constant across channel length and channel depth is roughly uniform

\[
I_{DS} = \frac{W}{L} \mu_n C_{OX} (V_{GS} - V_{Tn} - 0.5V_{DS})V_{DS}
\]

For small V_{DS}

\[
R_{DS} \approx \frac{1}{\frac{W}{L} \mu C_{ox} (V_{GS} - V_{Tn})}
\]
MOS Equations in Triode Region (Large V_{DS})

Drain current: Expression used in SPICE level 1

$$I_{DS} = \frac{W}{L} \mu_n C_{OX} (V_{GS} - V_{Tn} - 0.5V_{DS})V_{DS}$$

Linear approximation

$$V_{DSat} = V_{GS} - V_{Tn}$$

This doesn't really happen
If V_{GC} is always above V_T throughout the channel length, the transistor current obeys the triode region current equation:

$$V_{GC}(x) = V_{GS} - V(x) = V_{GS} - V_{DS} \frac{x}{L}$$
Saturation Region Channel Profile

When $V_{DS} \geq V_{GS} - V_{TH} = V_{OV}$, V_{GC} no longer exceeds V_{TH}, resulting in the channel “pinching off” and the current saturating to a value that is no longer a function of V_{DS} (ideally).

$V_{GC}(x) = V_{GS} - V(x) = V_{GS} - V_{DS} \frac{x}{L}$
Saturation Region

- Channel "pinches-off" when $V_{DS} = V_{GS} - V_{TH}$ and the current saturates
- After channel charge goes to 0, the high lateral field "sweeps" the carriers to the drain and drops the extra V_{DS} voltage

$$V_{GC}(x) = V_{GS} - V(x) = V_{GS} - V_{DS} \frac{x}{L}$$

$$I_{DS} = \mu_n C_{OX} \frac{W}{L} \left(V_{GS} - V_{Tn} - \frac{V_{DS}}{2} \right) V_{DS} \bigg|_{V_{DS} = V_{GS} - V_{Tn}}$$

$$V_{DSSat} = V_{GS} - V_{Tn}$$

$$I_{DS} = \frac{\mu_n C_{OX} W}{2L} \left(V_{GS} - V_{Tn} \right)^2$$
NMOS $I_D - V_{DS}$ Characteristics

$V_{OV} = V_{GS} - V_{TN}$

[Sedra/Smith]

Curve bends because the channel resistance increases with v_{DS}

Almost a straight line with slope proportional to V_{OV}

Triode $(v_{DS} \leq V_{OV})$

Saturation $(v_{DS} \geq V_{OV})$

Current saturates because the channel is pinched off at the drain end, and v_{DS} no longer affects the channel.

$v_{GS} = V_t + V_{OV}$

0 $V_{DS_{sat}} = V_{OV}$ v_{DS}

i_D
MOS “Large-Signal” Output Characteristic

\[i_D = \frac{1}{2} k_n \left(\frac{W}{L} \right) V_{OV4}^2 \]

\[v_{DS} \leq v_{OV} \]
Triode region

\[v_{DS} \geq v_{OV} \]
Saturation region

\[v_{GS} = V_t + V_{OV4} \]

\[v_{GS} = V_t + V_{OV3} \]

\[v_{GS} = V_t + V_{OV2} \]

\[v_{GS} = V_t + V_{OV1} \]

Note: \(V_{ov} = V_{GS} - V_T \)
What about the PMOS device?

- The current equations for the PMOS device are the same as the NMOS EXCEPT you swap the current direction and all the voltage polarities.

NMOS

Linear: \(I_{DS} = \frac{W}{L} \mu_n C_{OX} (V_{GS} - V_{Tn} - 0.5V_{DS})V_{DS} \)

Saturation: \(I_{DS} = \frac{W}{2L} \mu_n C_{OX} (V_{GS} - V_{Tn})^2 \)

PMOS

Linear: \(I_{SD} = \frac{W}{L} \mu_p C_{OX} (V_{SG} - |V_{Tp}| - 0.5V_{SD})V_{SD} \)

Saturation: \(I_{SD} = \frac{W}{2L} \mu_p C_{OX} (V_{SG} - |V_{Tp}|)^2 \)
PMOS \(I_D - V_{SD} \) Characteristics

\[V_{OV} = V_{SG} - |V_{TP}| \]

[Karsilayan]
NMOS DC Operation (w/ infinite r_{out})

<table>
<thead>
<tr>
<th>Region</th>
<th>Bias Condition</th>
<th>I_{DS}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cutoff</td>
<td>$V_{GS} < V_{TN}$</td>
<td>$I_{DS} = 0$</td>
</tr>
<tr>
<td>Triode (Linear)</td>
<td>$V_{GS} > V_{TN}, V_{DS} < V_{GS} - V_{TN}$</td>
<td>$I_{DS} = \mu_n C_{ox} \frac{W}{L} \left(V_{GS} - V_{TN} - \frac{V_{DS}}{2} \right) V_{DS}$</td>
</tr>
<tr>
<td>Saturation (Active)</td>
<td>$V_{GS} > V_{TN}, V_{DS} > V_{GS} - V_{TN}$</td>
<td>$I_{DS} = \frac{\mu_n C_{ox}}{2} \frac{W}{L} \left(V_{GS} - V_{TN} \right)^2$</td>
</tr>
</tbody>
</table>

- In transistor model, often combine $\mu_n C_{ox}$ term as a parameter K_{P_N} with units A/V^2.
- In lab, we combine $\mu_n C_{ox}(W/L)$ term as a parameter β_N with units A/V^2.
PMOS DC Operation (w/ infinite r_{out})

<table>
<thead>
<tr>
<th>Region</th>
<th>Bias Condition</th>
<th>I_{SD}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cutoff</td>
<td>$V_{SG} <</td>
<td>V_{TP}</td>
</tr>
<tr>
<td>Triode (Linear)</td>
<td>$V_{SG} ></td>
<td>V_{TP}</td>
</tr>
<tr>
<td>Saturation (Active)</td>
<td>$V_{SG} ></td>
<td>V_{TP}</td>
</tr>
</tbody>
</table>

- In transistor model, often combine $\mu_{p}C_{ox}$ term as a parameter K_{Pp} with units A/V^2
- In lab, we combine $\mu_{p}C_{ox}(W/L)$ term as a parameter β_{p} with units A/V^2