

$$
\begin{aligned}
K P_{N} & =100 \mu \mathrm{~A} / \mathrm{V} \\
V_{T N} & =0.7 \mathrm{~V} \\
W / L & =10 \mu \mathrm{~m} / \mathrm{/mm}
\end{aligned}
$$

Max R_{0} for saturation $=\frac{10 V-V \text { Dosgat }}{I_{\text {DSAT }}}$
where $\quad V_{\text {DS } S_{\text {st }}}=V_{G S}-V_{T N}$

$$
\begin{gathered}
W / V_{G S}=1 \mathrm{~V} \Rightarrow V_{D S_{\text {SaI }}}=0.3 \mathrm{~V} \\
V_{G S}=2 \mathrm{~V} \Rightarrow V_{O S_{\text {Sat }}}=1.3 \mathrm{~V} \\
I_{\text {OSAT }}=\frac{1}{2} \mathrm{~K} P_{N} \frac{\mathrm{~W}}{L}\left(V_{G S}-V_{\text {TN }}\right)^{2} \\
W / V_{G S}=1 \mathrm{~V} \Rightarrow I_{\text {DSAT }}=45 \mu \mathrm{~A} \\
W / V_{G S}=2 \mathrm{~V} \Rightarrow I_{\text {DSAT }}=845 \mu \mathrm{~A} \\
\frac{V_{G S}}{1 \mathrm{~V}} \frac{M_{\text {ax }} R_{D}}{\frac{10 \mathrm{~V}-0.3 \mathrm{~V}}{45 \mu \mathrm{~A}}=216 \mathrm{kN}} \\
2 \mathrm{~V} \quad \frac{10 \mathrm{~V}-1.3 \mathrm{~V}}{845 \mu \mathrm{~A}}=10.3 \mathrm{kN}
\end{gathered}
$$

$w / V_{a}=2 \mathrm{~V} \quad R_{D}=5 \mathrm{kN}$

$$
R_{0}=5 \mathrm{k} \Omega \leq R_{\text {max }}=10.3 \mathrm{k} \Omega
$$

\therefore Transistor is saturated.

$$
\begin{aligned}
& V_{R_{0}}=5 \mathrm{NN} \quad I_{D}=845 \mu \mathrm{~A} \\
& V_{0}=10 \mathrm{~V}-I_{D} R_{D}=10 \mathrm{~V}-845 \mu \mathrm{~A}(5 \mathrm{kN})=5.78 \mathrm{~V}
\end{aligned}
$$

$$
\begin{aligned}
W / V_{G}=2 v & R_{D}
\end{aligned}=15 \mathrm{k} \Omega,
$$

\therefore Transistor is in triode.

$$
\begin{aligned}
& I_{D}=K \rho_{N} \frac{W}{L}\left[V_{G T S}-V_{T N}-\frac{1}{2} V_{D S}\right] V_{D S} \\
& I_{D}=(1 \mathrm{~m} / \mathrm{V})\left[1.3 \mathrm{~V}-0.5\left(10 \mathrm{~V}-I_{D} 15 \mathrm{kV}\right)\right]\left(10 \mathrm{~V}-I_{0} 15 \mathrm{kN}\right) \\
& \Rightarrow 112.5 \times 10^{3} I_{D}^{2}-129.5 I_{b}+37 \times 10^{-3}=0 \\
& I_{0}=527 \mu \mathrm{~A} \quad \Delta R \quad 624 \mu \mathrm{~A} \\
& V_{D}=2.1 \mathrm{~V} \Rightarrow \text { sting in sat. } \quad V_{0}=0,64 \mathrm{~V} \Rightarrow \text { triode (valid) } \\
& \text { (not valid) } \\
& W / R_{D}=1 s k \mu \quad I_{D}=624 \mu \mathrm{~A} \\
& V_{D}=0.64 \mathrm{~V}
\end{aligned}
$$

$$
\begin{aligned}
& K P_{p}=30 \mathrm{~mA} / \mathrm{V} \\
& V_{T P}=-1 \mathrm{~V} \\
& W / L=10
\end{aligned}
$$

$$
\max _{\text {ax }} R_{0} \text { for soturation }=\frac{10 \mathrm{~V}-V_{\text {SOSar }}}{I_{D S A T}}
$$

where $V_{\text {SOSAT }}=V_{S Q}-\left|V_{\text {TP }}\right|$

$$
\begin{aligned}
& W V_{G}=8.5 \mathrm{~V} \Rightarrow V_{S_{\text {sat }}}=0.5 \mathrm{~V} \\
& W V_{G}=7.5 \mathrm{~V} \Rightarrow V_{S D_{\text {sat }}}=1.5 \mathrm{~V} \\
& I_{\text {OSat }}=\frac{1}{2} K P_{\rho} \frac{W}{L}\left(V_{S G}-\left|V_{T P}\right|\right)^{2} \\
& W / V_{G}=8.5 \mathrm{~V} \Rightarrow I_{\text {DSat }}=37.5 \mu \mathrm{~A} \\
& \omega / V_{G}=2,5 \mathrm{~V} \Rightarrow I_{D_{\text {sat }}}=337.5 \mu \mathrm{~A} \\
& \frac{V_{G}}{8.5 \mathrm{~V}} \quad \frac{M_{a x} R_{D}}{\frac{10 v-0.5 \mathrm{~V}}{37.5 \mu \mathrm{~A}}=253 \mathrm{kN}} \\
& 7.5 \mathrm{~V} \quad \frac{10 v-1.5 v}{337.5 \mu \mathrm{~A}}=25.2 \mathrm{k} \Omega
\end{aligned}
$$

$$
\begin{aligned}
& W / V_{G}=7.5 \mathrm{~V} \quad 3, R_{0}=20 \mathrm{kN} \\
& R_{D}=20 \mathrm{k} \Omega \leq R_{\text {max }}=25.2 \mathrm{k} \Omega \\
& \therefore \text { Transistor is saturated } \\
& W_{R_{0}=2^{0, N M}} \quad I_{D}=337.5 \mu \mathrm{~A} \\
& V_{D}= \\
& I_{D} R_{D}=337.5 \mu \mathrm{~A}(20 \mathrm{kR})=6.75 \mathrm{~V} \\
& W / V_{G}=7.5 \mathrm{~V} \quad 3 \quad R_{D}=40 \mathrm{k} \Omega \\
& R_{D}=40 \mathrm{k} \Omega>R_{\text {max }}=25.2 \mathrm{k} \Omega
\end{aligned}
$$

\therefore Transistor is in triode.

$$
\begin{aligned}
& I_{D}=K \rho_{\rho} \frac{W}{L}\left[V_{S G}-\left|V_{T P}\right|-\frac{1}{2} V_{S D}\right] V_{S O} \\
& I_{D}=(0.3 \mathrm{~m} / \mathrm{V})\left[1.5 \mathrm{~V}-0.5\left(10 \mathrm{~V}-I_{0} 40 \mathrm{kN}\right)\right]\left(10 \mathrm{~V}-I_{0} 40 \mathrm{~K} \mathrm{~N}\right) \\
& \Rightarrow 240 \times 10^{3} I_{0}{ }^{2}-10 / I_{0}+10.5 \times 10^{-3}=0 \\
& I_{0}=187.5 \mu \mathrm{~A} \text { OK } 233.3 \mu \mathrm{~A} \\
& V_{0}=7.5 \mathrm{~V} \Rightarrow \begin{array}{l}
\text { still in out } \\
\text { (not valid) }
\end{array} \quad V_{0}=9.33 \mathrm{~V} \Rightarrow \text { trade } \\
& \text { (valid) } \\
& W_{R_{0}}=40 \mathrm{kd} \quad \begin{array}{l}
I_{D}=233.3 \mu \mathrm{~A} \\
V_{D}=9.33 \mathrm{~V}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& K P_{N} \frac{W}{L}=B=102 \mathrm{~mA} / \mathrm{N}^{2} \\
& V_{\text {TN }}=2.0 \mathrm{~V} \\
& \lambda=0.01 U^{-1}\binom{r_{0} \text { call }}{\text { unly }} \\
& V_{G}=10 \mathrm{~V}\left(\frac{510 k}{470 k+510 k}\right)=5,20 \mathrm{~V} \\
& I_{D}=\frac{1}{2} K P_{N} \frac{W}{L}\left[V_{G}-I_{D} R_{S}-V_{T N}\right]^{2} \\
& I_{D}^{2} R_{S}^{2}-I_{D}\left[2\left(V_{G}-V_{T N}\right) R_{S}+\frac{2}{K P_{N} W}\right]+\left(V_{G}-V_{\text {PN }}\right)^{2}=0 \\
& 9.61 \times 10^{6} I_{D}^{2}-19.86 \times 10^{3} I_{D}+10.24=0 \\
& I_{D}=987 \mu \mathrm{~A} \quad 0 \mathrm{~V} \quad 1.08 \mathrm{~mA} \\
& V_{S}=I_{0} R_{5}=3.06 \mathrm{~V} \quad O R \quad 3.35 \mathrm{~V} \text { (inconsisteat) } \\
& \text { (val:d) } \\
& V_{0}=10 U-3 k \pi(987 \mu 4)=7.04 \mathrm{~V} \\
& g_{m}=K P_{N} \frac{W}{L}\left(V_{G S}-V_{T N}\right)=\left(102 \mathrm{~mA} / \mathrm{N}^{2}\right)(2.14-2.0)=14.3 \mathrm{~mA} / \mathrm{V} \\
& r_{0}=\frac{1}{\lambda I_{0}}=\frac{1}{\left(0.01 V^{-1}\right)(987 \mu A)}=101 \mathrm{k} \Omega \\
& V_{D}=7.04 \mathrm{~V} \\
& V_{G}=5.2 \mathrm{~V} \quad I_{D}=987 \mu \mathrm{~A} \\
& g_{m}=14.3 \mathrm{~m} / \mathrm{v} \\
& V_{5}=3.06 \mathrm{~V} \\
& r_{0}=101 \mathrm{k} 2
\end{aligned}
$$

ECEN 325

Homework \#8 Multisim

Instructor: Sam Palermo
3.

DC Operating Points

K. Common Source Amplifier

$$
\begin{aligned}
& A_{v}=-\frac{g_{m}\left(R_{0} \| R_{L}\right)}{1+g_{m} R_{s 1}}=-\frac{(14.3 \mathrm{ma/v})(3 \mathrm{k} / 1(20 \mathrm{kN})}{1+(14.3 \mathrm{md} / \mathrm{L})(100 \mathrm{~K})} \\
& A_{v}=-15.4 \mathrm{v} / \mathrm{v}=23.7 \mathrm{~dB} \\
& R_{\text {in }}=R_{G}=470 \mathrm{ks} / / \mathrm{s} 10 \mathrm{kN}=245 \mathrm{kn} \\
& R_{n}=245 \mathrm{k} \Omega=108 \mathrm{~dB} \Omega \\
& R_{\text {oft }}=R_{0}=3 \mathrm{k} \mathrm{\Lambda}=69,5 \mathrm{dBR} \\
& G_{v}=\frac{R_{\text {in }}}{R_{\text {in }}+R_{v 5}} A_{v}=\frac{245 \mathrm{kR}}{245 k n+50}(-15.4) \\
& G_{v}=-15.4 v / v=23.7 \mathrm{~dB}
\end{aligned}
$$

2. Common Source Amplifier

The simulated value of 23.7 dB closely matches the hand calculation of 23.7 dB for both A_{v} and Gv.

The simulated $\mathrm{R}_{\text {in }}$ value of $108 \mathrm{~dB} \Omega$ matches the hand calculation of $108 \mathrm{~dB} \Omega$.

The simulated Rout value of $69.5 \mathrm{~dB} \Omega$ closely matches the hand calculation of $69.5 \mathrm{~dB} \Omega$.
5. (ammo, Drain Amplifier

$$
\begin{aligned}
& A_{v}=\frac{g_{m}\left(R_{s} \| R_{L}\right)}{1+g_{m}\left(R_{s} \| R_{L}\right)}=\frac{14.3^{\mathrm{mt} / v}(3.1 \mathrm{kN} \| 20 \mathrm{k} \Omega)}{1+14.3 \mathrm{~m} / \mathrm{N} /(3.1 \mathrm{kel} \| 20 \mathrm{kN})} \\
& A_{v}=0.975 \mathrm{~s} / \mathrm{s}=-0.22 \mathrm{~dB} \\
& R_{\text {in }}=R_{G}=470 \mathrm{k} \Omega / 1510 \mathrm{k} \Omega=245 \mathrm{k} \\
& R_{\text {in }}=245 \mathrm{k} \Omega=108 \mathrm{dk} \Omega \\
& R_{\text {out }}=R_{s}\left\|\frac{1}{g_{m}}=3,1 \mathrm{kn}\right\| \frac{1}{14.3 \mathrm{ma/m}} \\
& R_{\text {OUT }}=68.4 \Omega=36.7 \mathrm{~dB} \Omega \\
& G_{v}=\frac{R_{i n}}{R_{i n}+R_{v s}} A_{v}=\frac{245 \mathrm{kn}}{245 \mathrm{kn}+50}(0.975) \\
& G_{v}=0.975 \mathrm{v} / \mathrm{v}=-0.22 \mathrm{~dB}
\end{aligned}
$$

3. Common Drain Amplifier

The simulated value of -0.22 dB and -0.23 dB closely matches the hand calculation of -0.22 dB for both A_{v} and G_{v}, respectively.

The simulated $\mathrm{R}_{\text {in }}$ value of $108 \mathrm{~dB} \Omega$ matches the hand calculation of $108 \mathrm{~dB} \Omega$.

The simulated Rout value of $36.8 \mathrm{~dB} \Omega$ closely matches the hand calculation of $36.7 \mathrm{~dB} \Omega$.
6. Common Gate Amplifier

$$
\begin{aligned}
& A_{V}=g_{m}\left(R_{D} \| R_{L}\right)=(14,3 \mathrm{~mA} / v)(3 k \omega / / \text { roan }) \\
& A_{v}=37.3 \mathrm{v} / v=31.4 \mathrm{~dB} \\
& R_{\text {in }}=R_{s}\left\|\frac{1}{g_{m}}=3.1 \mathrm{kn}\right\| \frac{1}{14.3 \mathrm{man}} \\
& R_{\text {in }}=68.4 \Omega=36.7 \mathrm{~dB} \Omega \\
& R_{\text {out }}=R_{D}=3 \mathrm{k} \Lambda=69.5 \mathrm{dBN} \\
& G_{v}=\frac{R_{i n}}{R_{i 1}+R_{v s}} A_{v}=\frac{68.4 \pi}{68.4 \pi+50 \pi}(37.3 \%) \\
& G_{v}=21.5 \mathrm{~V} / \mathrm{v}=26.7 \mathrm{~dB}
\end{aligned}
$$

4. Common Gate Amplifier

The simulated A_{v} value of 31.4 dB matches closely the hand calculation of 31.4 dB . The simulated G_{v} value of 26.6 dB closely matches the hand calculation of 26.7 dB .

The simulated $R_{\text {in }}$ value of $36.8 \mathrm{~dB} \Omega$ matches the hand calculation of $36.7 \mathrm{~dB} \Omega$.

The simulated Rout value of $69.5 \mathrm{~dB} \Omega$ closely matches the hand calculation of $69.5 \mathrm{~dB} \Omega$.

