ECEN 325

Homework \#1

Due: February 1, 2024, 11:59PM
Homeworks will not be received after due.
Instructor: Sam Palermo

Complex Number Review (12 points)

For the 6 complex numbers, express/compute both the magnitude and phase angle
a. $a+j b$
b. $\frac{a+j b}{c+j d}$
c. $(a+j b)(a-j b)$
d. $100+j 10$
e. $\frac{100+j 10}{(1+j 10)(10+j 10)}$
f. $\frac{(1+j 10)(10+j 10)}{100+j 10}$

Transfer Functions \& Bode Plots (88 points)

For the 4 following circuits:
a) Derive the AC transfer function, $\mathrm{F}(\mathrm{s})=\mathrm{v}_{\mathrm{o}}(\mathrm{s}) / \mathrm{v}_{\mathrm{i}}(\mathrm{s})$ (6 points)
b) Using bode approximations, plot by hand both the magnitude and phase response of the transfer function. (5 points)
c) Plot both the exact magnitude and phase response using either MATLAB, MultiSim, or any other software package. (5 points)
d) Report the values for DC gain, gain at infinite frequency, and the location of poles and zeros for each transfer function. Is the circuit a low-pass or high-pass filter? (6 points)

Hint: $\mathrm{s}=\mathrm{j} \omega=\mathrm{j} 2 \pi \mathrm{f}$, where $\mathrm{f}=$ frequency in Hz (cycles/second) and $\omega=$ angular frequency in rads/sec
1.

2.

3.

4.

