ECEN 325

Homework #1

Due: February 1, 2024, 11:59PM

Homeworks will not be received after due.

Instructor: Sam Palermo

Complex Number Review (12 points)

For the 6 complex numbers, express/compute both the magnitude and phase angle

a.
$$a + jb$$

b.
$$\frac{a+jb}{c+id}$$

c.
$$(a+jb)(a-jb)$$

d.
$$100 + j10$$

e.
$$\frac{100+j10}{(1+j10)(10+j10)}$$

e.
$$\frac{100+j10}{(1+j10)(10+j10)}$$
 f. $\frac{(1+j10)(10+j10)}{100+j10}$

Transfer Functions & Bode Plots (88 points)

For the 4 following circuits:

- a) Derive the AC transfer function, $F(s)=v_0(s)/v_i(s)$ (6 points)
- b) Using bode approximations, plot by hand both the magnitude and phase response of the transfer function. (5 points)
- c) Plot both the exact magnitude and phase response using either MATLAB, MultiSim, or any other software package. (5 points)
- d) Report the values for DC gain, gain at infinite frequency, and the location of poles and zeros for each transfer function. Is the circuit a low-pass or high-pass filter? (6 points)

Hint: $s=j\omega=j2\pi f$, where f=frequency in Hz (cycles/second) and ω =angular frequency in rads/sec

1.

2.

4.

