Texas A&M University
Department of Electrical and Computer Engineering

ECEN 325 – Electronics

Spring 2009

Exam #1

Instructor: Sam Palermo

- Please write your name in the space provided below
- Please verify that there are 5 pages in your exam
- You may use one double-sided page of notes and equations for the exam
- Good Luck!

<table>
<thead>
<tr>
<th>Problem</th>
<th>Score</th>
<th>Max Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Name:
SAM PALERMO

UIN:
Problem 1 (30 points)
Plot the magnitude and phase response of the following transfer functions:

a) \[F(s) = \frac{10^{10}(s+10^6)}{(s+10^7)(s+10^8)} \]

\[\angle \omega \rightarrow 20 \] \[20 | \omega | \angle F(s) \] \[-20 \text{dB/dec} \] \[10^6 \text{ to } 10^8 \] \[10^7 \text{ to } 10^9 \]

b) \[F(s) = -\frac{10^{10}(s+10^6)}{s(s+10^8)} \]

\[\angle \omega \rightarrow 20 \] \[20 | \omega | \angle F(s) \] \[-20 \text{dB/dec} \] \[10^6 \text{ to } 10^8 \] \[10^7 \text{ to } 10^9 \]
Problem 2 (40 points)
Assume for problem 2 that all operational amplifiers are ideal.

a) Design an operational amplifier circuit which implements a low-pass filter with gain (Lossy Integrator). Design the circuit to achieve 10kΩ input impedance, -2V/V (6dB) dc gain, and 10kHz -3dB frequency. (15 points)

\[R_1 = R_2 = 10kΩ \]
\[DC \ Gain = \frac{-R_2}{R_1} = -2 \Rightarrow R_2 = 20kΩ \]
\[\omega_{-3dB} = 2\pi f_{-3dB} = \frac{1}{R_2 C} = \frac{2\pi}{10kHz} \]
\[\frac{1}{C} = \frac{1}{2\pi(2kHz)} \]
\[= \frac{1}{800μF} \]

\[Gain = 0dB @ 2kHz \]

c) For the following circuit obtain the expression for \(v_o \) as a function of \(v_{i1}, v_{i2}, \) and \(v_{i3} \).
Hint: apply superposition. (20 points)

\[v_A = -v_{i1} + \frac{Z_c}{Z_R + Z_c} v_{i2} \]
\[v_o = -\frac{Z_c}{Z_R} v_{i3} + \frac{1}{2} \left(1 + \frac{Z_c}{Z_R} \right) v_A \]
\[= -\frac{Z_c}{Z_R} v_{i3} + \frac{1}{2} \left(1 + \frac{Z_c}{Z_R} \right) \left(-v_{i1} + 2 \frac{Z_c}{Z_R + Z_c} v_{i2} \right) \]
\[= -\frac{1}{2} \frac{Z_R + Z_c}{Z_R} v_{i1} + \frac{Z_c}{Z_R} v_{i2} - \frac{Z_c}{Z_R} v_{i3} \]

\[v_o = -\frac{1 + 5RC}{52RC} v_{i1} + \frac{1}{5RC} v_{i2} - \frac{1}{5RC} v_{i3} \]
Problem 3 (20 points)

a) The operational amplifier used in part (b) of this problem has a dc gain of 10^5 and a -3dB frequency of 10rad/s. Sketch the open-loop magnitude response of the operational amplifier. Make sure to label the unity-gain frequency. (5 points)

b) The finite gain-bandwidth operational amplifier from part (a) is used in the following amplifier circuit. Find the expression for the closed-loop transfer function (V_o/V_i). (5 points)

c) What is the closed-loop -3dB frequency (bandwidth) of the total amplifier circuit? (5 points)

d) Sketch the closed-loop magnitude response of the amplifier circuit. (5 points)
Problem 4 (10 points)
The operational amplifier for this problem has a finite slew rate of 1V/µs.
a) For an output 100kHz triangle wave, what is the maximum amplitude that can be reproduced without distortion? (5 points)

\[\text{max} \left| \frac{d v_o(t)}{dt} \right| \leq SR \]

\[\frac{2A}{T/2} \leq 1 \frac{V}{\mu s} \]

\[A \leq 1 \frac{V}{\mu s} \left(\frac{T}{4} \right) = \frac{1 \frac{V}{\mu s}}{4(100 \text{kHz})} \]

\[A \leq 2.5 \text{V} \]

b) For an output 10V amplitude sine wave, what is the maximum frequency that can be reproduced without distortion? (5 points)

\[\text{max} \left| \frac{d (sin\omega t)}{dt} \right| \leq SR \]

\[\text{max} | A \omega \cos \omega t | \leq SR \]

\[A \omega \leq SR \]

\[\omega \leq \frac{SR}{A} = \frac{1 \frac{V}{\mu s}}{10 \text{V}} = 100 \text{krad/s} \]

\[\omega \leq 100 \text{krad/s} \]