\qquad
ECEN 457 (ESS)

Final Exam

This is a closed book and notes exam. This exam is worth 20% of your total grade.

Problem	Maximum	Yours
1	4	
2	4	
3	4	
4	4	
5	4	
Extra Credit*	1	
Total	21	

*Provide the list of five fundamental concepts learned in the course.

Problem 1. Design an active-RC circuit, using only one op amp, capable to yield an output voltage for four inputs equals to

$$
V_{o}=3 V_{1}-4 V_{2}+\frac{10^{6}}{s} V_{3}-10^{-6} s V_{4}
$$

Provide the topology and all the component values.
Hint. Consider a fully balanced circuit with a feedback load of a resistor $\left(\mathrm{R}_{\mathrm{F}}\right)$ and a capacitor $\left(C_{F}\right)$ in series.

Problem 2. The relation between GB and ω_{u} which the frequency at which $\mathrm{A}\left(\mathrm{j} \omega_{u}\right)=1$ is given by
$\omega_{\mathrm{u}}=\left\{\mathrm{GBH}^{2}-\omega_{3 \mathrm{db}}^{2}\right\}^{1 / 2}=\left\{\mathrm{A}_{\mathrm{o}}^{2}-1\right\}^{1 / 2} \omega_{3 \mathrm{~dB}}$
$\left.\omega_{u}\right|_{\mathrm{A}_{\gg 1}} \cong \mathrm{~A}_{\mathrm{o}} \omega_{3 \mathrm{db}}=\mathrm{GB}$

This is valid for
$A(s)=\frac{A_{o} \omega_{3 \mathrm{db}}}{s+\omega_{3 \mathrm{db}}}=\frac{\mathrm{A}_{o}}{1+\mathrm{s} / \omega_{3 \mathrm{db}}}$
Assume A_{0} is very large. Obtain ω_{u} when

$$
A(s)=\frac{A_{0}}{\left(1+\frac{s}{\omega_{d}}\right)\left(1+\frac{s}{\omega_{n d}}\right)}
$$

Problem 3. Given the active-RC low pass filter show below:

a) Determine the transfer function and $\mathrm{V}_{\mathrm{o}}(\mathrm{s})$ when $V_{i n}(s)=\frac{V_{m}}{s}$. Assume the open loop gain of the op amp is characterized by GB / s.
b) When the above transfer function's Q is set to $\frac{1}{\sqrt{2}}$, determine the maximum $\left|\frac{\mathrm{dv}_{\mathrm{o}}(\mathrm{t})}{\mathrm{dt}}\right|$ for a step $\left(\mathrm{V}_{\mathrm{m}}\right)$ input. Assume $\mathrm{V}_{\mathrm{o}}(0)=0$.

Hint. Use the following relations (Laplace transforms and trigonometric equations):

$$
\begin{gathered}
\mathcal{L}\left[\frac{d f(t)}{d t}\right]=s F(s)-f(0), \quad \mathcal{L}\left[e^{-a t} \sin \left(\omega_{0} t\right)\right]=\frac{\omega_{0}}{(s+a)^{2}+\omega_{0}^{2}} \\
A \sin \left(\omega_{0} t\right)-B \cos \left(\omega_{0} t\right)=\sqrt{A^{2}+B^{2}} \sin \left(\omega_{0} t-\phi\right) \text { where } \tan (\phi)=\frac{B}{A}
\end{gathered}
$$

Problem 4. Obtain the approximated expression of $\mathrm{V}_{\mathrm{o}}(\mathrm{s})$ for the LDO shown below

Note that the pass transistor M_{p} is a PMOS transistor. In its model assume $\mathrm{R}_{\mathrm{in}} \rightarrow \infty$ and $\mathrm{R}_{0}=\mathrm{r}_{\mathrm{o}}$.

Problem 5. The basic buck converter is illustrated below

Next we show the equivalent circuits, with some non-idealities, during Phase 1 and 2 , respectively.
Recall that $v_{L}=L \frac{\text { diL }}{d t}$, if v_{i} and v_{o} do not change during a switch cycle, the expression of v_{L} can be approximated as $\mathrm{v}_{\mathrm{L}}=\mathrm{L} \frac{\Delta \mathrm{i}}{\Delta \mathrm{t}}$.

During Switch 1 (2)
On (Off)

During Switch 1 (2)
Off (On)
i) Determine the inductor ripple current Δi_{L}
ii) The output voltage expression in steady state
iii) $\quad \Delta \mathrm{i}_{\mathrm{L}}$ and v_{o} for $\mathrm{V}_{\mathrm{F}}=\mathrm{V}_{\mathrm{SAT}}=0$

EXTRA CREDIT

List the five most fundamental concepts you learned in this course, write in one line for each concept why it is important.
1.
2.
3.
4.
5.

