FALL 2013

Name _____

ECEN 457 (ESS)

FINAL EXAM

Problem	Maximum	Yours
1	4	
2	4	
3	4	
4	4	
5	4	
Extra Credit*	1	
Total	21	

***Provide the list of five fundamental concepts learned in the course**

Problem 1.

- a.) Write the nodal equations in matrix form (YV=I) of the circuit shown below.
- b.) Obtain $G_M = \frac{i_o}{V_i}$ when V₃=0

Problem 2.

If the output voltage V_0 must be equal to $3V_1+5V_2-7V_3+4V_4$

Determine the value of R_x to satisfy the expression of Vo.

Problem 3.

Design a low frequency non-inverting amplifier with an ideal voltage gain K. Assume the open loop gain of the Op Amp is A₀ which yields a closed loop transfer function H(s).

$$H(s) = \frac{V_o(s)}{V_{in}(s)} = K(1 - \varepsilon_m)$$

Determine the expression of ε_m by approximating in H(s) by

$$\frac{K}{1+x} \cong \mathrm{K}(1-x) \quad \text{when } \mathrm{x} \ll 1$$

Also determine the minimum value (expression) of A_0 that meets a given error deviation ε_m .

$\boldsymbol{\varepsilon}_m$	
Min Ao	

Problem 4.

Propose a macromodel with passive elements and dependent sources that represent

$$H(s) = K \cdot \frac{1 - \frac{s}{\omega_z}}{(1 + \frac{s}{\omega_{p1}})(1 + \frac{s}{\omega_{p2}})}$$

Problem 5. Plot the open-loop gain A(s) and $\left|\frac{1}{\beta}\right|$.

Determine $\frac{1}{\beta}$, ROC, and ϕ_m for the 4 cases.

Here,

$$\begin{array}{c|c}
\hline C_1 \\
\hline C_1 \\
\hline C_F \\
\hline R_1 \\
\hline R_2 \\
\hline \hline R_2 \\
\hline \hline R_1 \\
\hline \hline R_2 \\
\hline R_2 \\
\hline \hline R_2 \\
\hline$$

 $\frac{1}{\beta} = k \frac{1 + \frac{s}{\omega_z}}{1 + \frac{s}{\omega_p}}, A(s) = \frac{A_o}{(1 + \frac{s}{\omega_{p1}})(1 + \frac{s}{\omega_{p1}})(1 + \frac{s}{\omega_{p1}})}$

 $\omega_{p1} = 10rad/s, \omega_{p2} = 1krad/s, \text{ and } \omega_{p3} = 100krad/s$

CASE	$\frac{1}{\beta}$	ROC	ϕ_m
a) C1=0, CF=0			
b) C1=0, CF=10nF			
c) C ₁ =10nF, C _F =0			
d) C ₁ =10nF, C _F =10nF			

$A_{o} = 10^{4}$	$^{1}, R_{1} =$	$100k\Omega$,	and R_2	$= 300k\Omega$
------------------	-----------------	----------------	-----------	----------------

Extra Credit

List the five most fundamental concepts you learned in this course.

 1.

 2.

 3.

 4.

5.