\qquad
ECEN 457 (ESS)

Final Exam

Problem	Maximum	Yours
1	$\mathbf{4}$	
2	4	
3	4	
4	4	
5	4	
Extra Credit*	$\mathbf{1}$	
Total	21	

*Provide the list of five fundamental concepts learned in the course

Problem 1.

a.) Write the nodal equations in matrix form ($\mathrm{YV}=\mathrm{I}$) of the circuit shown below.
b.) Obtain $G_{M}=\frac{i_{o}}{V_{i}}$ when $\mathrm{V}_{3}=\mathbf{0}$

Problem 2.

If the output voltage V_{0} must be equal to $3 V_{1}+5 V_{2}-7 V_{3}+4 V_{4}$

Determine the value of Rx_{x} to satisfy the expression of Vo.

Problem 3.

Design a low frequency non-inverting amplifier with an ideal voltage gain K. Assume the open loop gain of the Op Amp is $\mathrm{A}_{\mathbf{o}}$ which yields a closed loop transfer function $\mathbf{H}(\mathrm{s})$.

$$
H(s)=\frac{V_{o}(s)}{V_{i n}(s)}=K\left(1-\varepsilon_{m}\right)
$$

Determine the expression of ε_{m} by approximating in $\mathbf{H}(\mathbf{s})$ by

$$
\frac{K}{1+x} \cong K(1-x) \quad \text { when } x \ll 1
$$

Also determine the minimum value (expression) of A_{0} that meets a given error deviation ε_{m}.

$\boldsymbol{\varepsilon}_{\boldsymbol{m}}$	
Min Ao	

Problem 4.

Propose a macromodel with passive elements and dependent sources that represent

$$
H(s)=K \cdot \frac{1-\frac{s}{\omega_{z}}}{\left(1+\frac{s}{\omega_{p 1}}\right)\left(1+\frac{s}{\omega_{p 2}}\right)}
$$

Problem 5. Plot the open-loop gain $A(s)$ and $\left|\frac{1}{\beta}\right|$.
Determine $\frac{1}{\beta}$, ROC, and ϕ_{m} for the 4 cases.
Here,

$$
\frac{1}{\beta}=k \frac{1+\frac{s}{\omega_{z}}}{1+\frac{s}{\omega_{p}}}, A(s)=\frac{A_{o}}{\left(1+\frac{s}{\omega_{p 1}}\right)\left(1+\frac{S}{\omega_{p 1}}\right)\left(1+\frac{S}{\omega_{p 1}}\right)}
$$

$\omega_{p 1}=10 \mathrm{rad} / \mathrm{s}, \omega_{p 2}=1 \mathrm{krad} / \mathrm{s}$, and $\omega_{p 3}=100 \mathrm{krad} / \mathrm{s}$
$A_{o}=10^{4}, R_{1}=100 \mathrm{k} \Omega$, and $R_{2}=300 \mathrm{k} \Omega$

CASE	$\frac{1}{\boldsymbol{\beta}}$	ROC	ϕ_{m}
$\text { a) } \begin{array}{r} \mathrm{C}_{1}=0, \\ \mathrm{C}_{\mathrm{F}}=0 \end{array}$			
$\text { b) } \begin{aligned} & C_{1}=0, \\ & C_{F}=10 n F \end{aligned}$			
$\text { c) } \begin{aligned} & \mathrm{C}_{1}=10 \mathrm{nF}, \\ & \mathrm{C}_{\mathrm{F}}=0 \end{aligned}$			
$\text { d) } \begin{aligned} & \mathrm{C}_{1}=10 \mathrm{nF}, \\ & \mathrm{C}_{\mathrm{F}}=10 \mathrm{nF} \end{aligned}$			

Extra Credit

List the five most fundamental concepts you learned in this course.
1.
2.
3.
4.
5.

