ECEN 457 (ESS)

Second-ORDER FILTER TYPES

- Using a number of first - order and second - order filter blocks, of any type of approximation. one can built higher - order filters.
- We will focus here in the analysis of second-order filters also known as biquads.
- A design procedure for a biquad filter named Tow- Thomas will be presented.

SECOND-ORDER FILTER TYPES

Second-order blocks are important building blocks since with a combination of them allows the implementation of higher-order filters. The general order transfer function in the s-plane has the form:

$$
\mathrm{H}(\mathrm{~s})=\frac{\mathrm{K}_{1} \mathrm{~s}^{2}+\mathrm{K}_{2} \mathrm{~s}+\mathrm{K}_{3}}{\mathrm{~s}^{2}+\frac{\omega_{0} \mathrm{~s}}{\mathrm{Q}}+\omega_{\mathrm{p}}^{2}}
$$

Particular conventional cases are:

Lowpass	i.e.,	$\mathrm{K}_{1}=\mathrm{K}_{2}=0$
Bandpass	i.e.,	$\mathrm{K}_{1}=\mathrm{K}_{3}=0$
Highpass	i.e.,	$\mathrm{K}_{2}=\mathrm{K}_{3}=0$
(Notch) Band-Elimination	i.e.,	$\mathrm{K}_{2}=0$
Allpass	i.e.,	$\mathrm{K}_{1}=1, \quad \mathrm{~K}_{2}=-\frac{\omega_{\mathrm{o}}}{\mathrm{Q}}$ and $\mathrm{K}_{3}=\omega_{\mathrm{o}}^{2}$

One interesting case used for amplitude equalization is the "equalizer" sometimes referred to as Bump (DIP) Equalizer. In this case, $\quad \mathrm{K}_{1}=1 \quad \mathrm{~K}_{3}=a 0^{2} \quad \mathrm{~K}_{2}= \pm \mathrm{k} \frac{\omega_{0}}{\mathrm{Q}}$

Specific structures have different properties. Some structures have enough degrees of freedom to allow them to change independently ω_{0}, Q (or BW) and a particular gain $\mid H\left(\omega_{p}\right)$ where ω_{p} is a particular frequency, i.e., $\quad \omega_{\mathrm{p}}=0, \omega_{0}, \infty$ for the LP, BP and HP cases. Furthermore, some structures have the property to have constant Q or BW while varying f_{o}.

Properties of Second-Order Systems

$$
s^{2}+\frac{\omega_{0}}{\mathrm{Q}} \mathrm{~s}+\omega_{\mathrm{o}}^{2}=(\mathrm{s}+\alpha)^{2}+\beta^{2}=s^{2}+2 \alpha \mathrm{~s}+\omega_{0}^{2}
$$

where

$$
\alpha=\frac{\omega_{0}}{2 \mathrm{Q}}, \quad \beta=\omega_{\mathrm{o}} \sqrt{1-\frac{1}{4 \mathrm{Q}^{2}}}
$$

How to determine the pole location from a step response?

$$
\mathrm{K}_{1}, \mathrm{~K}_{2}=\mathrm{f}(\mathrm{~N}(\mathrm{~s}))
$$

Pole locations and properties

The Biquad Filter

This is a two integrator loop that can implement two real or complex poles. Zeros can be also achieved if an additional summer is added.

Using KCL at the inverting - input of OA_{1} can write

$$
\begin{equation*}
\frac{\mathrm{V}_{\mathrm{i}}}{\mathrm{R}_{1}}+\mathrm{V}_{\mathrm{BP}}\left(\frac{1}{\mathrm{R}_{2}}+\mathrm{sC}_{1}\right)-\frac{\frac{\mathrm{R}_{3 \mathrm{~A}}}{\mathrm{R}_{3}} \mathrm{~V}_{\mathrm{LP}}}{\mathrm{R}_{5}}=0 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{V}_{\mathrm{LP}}=-\mathrm{V}_{\mathrm{BP}} \frac{1}{\mathrm{sC}_{2} \mathrm{R}_{4}} \tag{2}
\end{equation*}
$$

Solving (1) and (2) yields:

$$
\begin{equation*}
\mathrm{H}_{\mathrm{BP}}=\frac{-\mathrm{Ks}}{\mathrm{~s}^{2}+\frac{\omega_{0}}{\mathrm{Q}} \mathrm{~s}+\omega_{\mathrm{o}}^{2}} \tag{3}
\end{equation*}
$$

Where

$$
\begin{aligned}
& \mathrm{K}=1 / \mathrm{C}_{1} \mathrm{R}_{1} \\
& \frac{\omega_{0}}{\mathrm{Q}}=\frac{1}{\mathrm{C}_{1} \mathrm{R}_{2}} \text { or } \mathrm{Q}=\mathrm{R}_{2} \sqrt{\frac{\mathrm{R}_{3 \mathrm{~A}} \mathrm{C}_{1}}{\mathrm{R}_{3} \mathrm{C}_{2} \mathrm{R}_{4} \mathrm{R}_{5}}} \\
& \omega_{0}^{2}=\frac{\left(\mathrm{R}_{3 \mathrm{~A}} / \mathrm{R}_{3}\right)}{\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{R}_{4} \mathrm{R}_{5}}
\end{aligned}
$$

Using (3) and (2) becomes

$$
H_{L P}(s)=\frac{V_{\mathrm{LP}(\mathrm{~s})}}{\mathrm{V}_{\mathrm{i}}(\mathrm{~s})}=\frac{\frac{-\mathrm{K}_{\mathrm{s}}}{s_{C_{2}} R_{4}}}{s^{2}+\frac{\omega_{0}}{\mathrm{Q}} \mathrm{~s}+\omega_{0}^{2}}=\frac{\frac{1}{\mathrm{C}_{1} \mathrm{R}_{1} \mathrm{C}_{2} R_{4}}}{s^{2}+\frac{\omega_{0}}{\mathrm{Q}} \mathrm{~s}+\omega_{0}^{2}}
$$

$$
H_{L P}(o)=\frac{R_{5}}{R_{1}\left(R_{3 A} / R_{3}\right)}
$$

$$
\mathrm{H}_{\mathrm{BP}}\left(\omega_{\mathrm{o}}\right)=-\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}
$$

Feedforward Tow-Thomas Biquad Circuit

Analysis using KCL at the input of A1 plus the simple relations of V11/V3 and V6/V11 yields the following transfer function.

Description of the Parameters for the Tow-Thomas Filter

General Transfer Function

$$
\begin{aligned}
& \text { Function } \\
& T(s)=-\frac{R_{8}}{R_{6}} \frac{s^{2}+\left(\frac{1}{R_{1} C_{9}}-\frac{1}{R_{4} C_{9}} \frac{R_{6}}{R_{7}}\right)+\frac{R_{6}}{R_{7}} \frac{1}{R_{3} R_{5} C_{9} C_{10}}}{s^{2}+s\left(\frac{1}{R_{1} C_{9}}\right)+\frac{R_{8}}{R_{7}} \frac{1}{R_{3} R_{2} C_{9} C_{10}}}
\end{aligned}
$$

where

$$
\begin{gathered}
\omega_{\mathrm{p}}^{2}=\frac{\mathrm{R}_{8}}{\mathrm{R}_{7} \mathrm{R}_{2} \mathrm{R}_{3} \mathrm{C}_{9} \mathrm{C}_{10}}, \quad \omega_{\mathrm{z}}^{2}=\frac{\mathrm{R}_{6}}{\mathrm{R}_{3} \mathrm{R}_{5} \mathrm{R}_{7} \mathrm{C}_{9} \mathrm{C}_{10}} \\
\mathrm{Q}_{\mathrm{p}}=\mathrm{R}_{1} \sqrt{\frac{\mathrm{R}_{8} \mathrm{C}_{9}}{\mathrm{R}_{2} \mathrm{R}_{3} \mathrm{R}_{7} \mathrm{C}_{10}}}, \quad \mathrm{Q}_{\mathrm{z}}=\sqrt{\frac{\mathrm{R}_{6} \mathrm{C}_{9}}{\mathrm{R}_{3} \mathrm{R}_{5} \mathrm{R}_{7} \mathrm{C}_{10}}} /\left(\frac{1}{\mathrm{R}_{1}}-\frac{\mathrm{R}_{6}}{\mathrm{R}_{4} \mathrm{R}_{7}}\right)
\end{gathered}
$$

and

$$
\begin{aligned}
& \left|\mathrm{H}_{\mathrm{HP}}\right|=\frac{\mathrm{R}_{8}}{\mathrm{R}_{6}}, \quad \text { for } \quad \mathrm{R}_{1}=\frac{\mathrm{R}_{4} \mathrm{R}_{7}}{\mathrm{R}_{6}}, \quad \mathrm{R}_{5} \rightarrow \infty \\
& \left|H_{B P}\right|=\frac{\mathrm{R}_{1} \mathrm{R}_{8}}{\mathrm{R}_{4} \mathrm{R}_{7}}, \text { for } \quad \mathrm{R}_{5}, \mathrm{R}_{6} \rightarrow \infty \\
& \left|\mathrm{H}_{\mathrm{LP}}\right|=\frac{\mathrm{R}_{2}}{\mathrm{R}_{5}}, \quad \text { for } \quad \mathrm{R}_{4}, \mathrm{R}_{6} \rightarrow \infty
\end{aligned}
$$

For the bandstop (notch)

$$
\left|\mathrm{H}_{\text {notch }}\right|=\frac{\mathrm{R}_{8}}{\mathrm{R}_{6}}, \quad \text { for } \quad \mathrm{R}_{1}=\frac{\mathrm{R}_{4} \mathrm{R}_{7}}{\mathrm{R}_{6}}, \mathrm{R}_{5}=\frac{\mathrm{R}_{6} \mathrm{R}_{2}}{\mathrm{R}_{8}}
$$

Design Equations for the Tow-Thomas Filter

Let

$$
\begin{gathered}
\mathrm{R}_{3}=\mathrm{R}^{2} \\
\mathrm{R}_{2}=\mathrm{a}^{2} \mathrm{R}_{3} \\
\mathrm{R}_{7}=\mathrm{R}_{8}=\mathrm{R}^{\prime} \\
\mathrm{C}_{1}=\mathrm{C}_{2}=\mathrm{C} \\
\omega_{\mathrm{p}}=\frac{1}{\mathrm{aRC}}, \quad \omega=\frac{1}{\mathrm{C}} \sqrt{\frac{\mathrm{R}_{6}}{\mathrm{R}_{5} \mathrm{RR}^{\prime}}} \\
\mathrm{Q}_{\mathrm{p}}=\frac{\mathrm{R}_{1}}{\mathrm{aR}}, \quad \mathrm{Q}_{\mathrm{z}}=\sqrt{\frac{\mathrm{R}_{6}}{\mathrm{R}_{5} \mathrm{RR}^{\prime}} /\left(\frac{1}{\mathrm{R}_{1}}-\frac{\mathrm{R}_{6}}{\mathrm{R}_{4} \mathrm{R}^{\prime}}\right)} \\
\left|\mathrm{H}_{\mathrm{HP}}\right|=\frac{\mathrm{R}^{\prime}}{\mathrm{R}_{6}}, \quad \text { for } \quad \mathrm{R}_{1}=\frac{\mathrm{R}_{4} \mathrm{R}^{\prime}}{\mathrm{R}_{6}}=\mathrm{R}_{4}\left|\mathrm{H}_{\mathrm{HP}}\right|, \quad \mathrm{R}_{5} \rightarrow \infty \\
\left|\mathrm{H}_{\mathrm{HP}}\right|=\frac{\mathrm{R}_{1}}{\mathrm{R}_{4}}, \quad \text { for } \quad \mathrm{R}_{5}, \mathrm{R}_{6} \rightarrow \infty \\
\left|\mathrm{H}_{\mathrm{LP}}\right|=\frac{\mathrm{a}^{2} \mathrm{R}}{\mathrm{R}_{5}}, \quad \text { for } \quad \mathrm{R}_{4}, \mathrm{R}_{6} \rightarrow \infty \\
\left|\mathrm{H}_{\text {notch }}\right|=\frac{\mathrm{R}^{\prime}}{\mathrm{R}_{6}}, \quad \text { for } \quad \mathrm{R}_{1}=\frac{\mathrm{R}_{4} \mathrm{R}^{\prime}}{\mathrm{R}_{6}}, \quad \mathrm{R}_{5}=\frac{\mathrm{a}^{2} \mathrm{RR}_{6}}{\mathrm{R}^{\prime}}
\end{gathered}
$$

PSPICE Input file of Tow Thomas Filter

