Filter Approximations & Frequency Transformations
Filter Approximation Concepts

How do you translate filter specifications into a mathematical expression which can be synthesized?

- Approximation Techniques

Why an ideal Brick Wall Filter cannot be implemented?

- Causality: Ideal filter is non-causal
- Rationality: No rational transfer function of finite degree (n) can have such abrupt transition
Filter Approximation Concepts

Practical Implementations are given via window specs.

$A_{\text{max}} = A_p$ is the maximum attenuation in the passband
$A_{\text{min}} = A_s$ is the minimum attenuation in the stopband
$\omega_s - \omega_c$ is the Transition Width
Approximation Types of Lowpass Filter

Definitions

- Ripple = $1 - A_p$
- Stopband attenuation = A_s
- Passband (cutoff frequency) = ω_c
- Stopband frequency = ω_s
Approximation of the Ideal Lowpass Filter

Since the ideal LPF is unrealizable, we will accept a small error in the passband, a non-zero transition band, and a finite stopband attenuation

\[|H(j\omega)|^2 = \frac{1}{1 + |K(j\omega)|^2} \]

- \(H(j\omega)\): filter’s transfer function
- \(K(j\omega)\): Characteristic function
 (deviation of \(|T(j\omega)|\) from unity)

For \(0 \leq \omega \leq \omega_c\) \(\rightarrow 0 \leq |K(j\omega)| \leq 1\)
For \(\omega > \omega_c\) \(\rightarrow |K(j\omega)|\) increases very fast
Maximally Flat Approximation (Butterworth)

Stephen Butterworth showed in 1930 that the gain of an n^{th} order maximally flat magnitude filter is given by

$$|H(j\omega)|^2 = H(j\omega)H(-j\omega) = \frac{1}{1 + \varepsilon^2 \omega^{2n}}$$

$K(j\omega) \cong 0$ in the passband in a maximally flat sense

$$\frac{d^k(|K(j\omega)|^2)}{d(\omega^2)^k} \bigg|_{\omega=0} = 0 \quad \text{for } k = 1, 2, \ldots, 2n - 1$$

The corresponding pole locations (for $\varepsilon = 1$) can be determined as follows

$$|H(s)|^2 = \frac{1}{1 + \left(\frac{s}{j}\right)^{2n}} = \frac{1}{1 + (-1)^n s^{2n}} \rightarrow (s_p)^{2n} = -(-1)^{-n} = e^{j\pi (2k-1+n)}$$

$$s_p = e^{j\frac{\pi (2k-1+n)}{n}} \quad k = 1, \ldots, 2n$$
Pole Locations: Maximally flat (ε=1)

The poles are located on the unity circle at equispaced angles

\[s_p = e^{j\theta_k} \quad \text{where} \quad \theta_k = \frac{\pi}{2} \left(\frac{2k-1+n}{n} \right) \quad k = 1, 2, \ldots, 2n \]

The real and imaginary parts are

\[Re\{ S_p \} = -\sin \left(\frac{2k-1}{n} \frac{\pi}{2} \right) \quad \text{Im}\{ S_p \} = \cos \left(\frac{2k-1}{n} \frac{\pi}{2} \right) \]

Poles in the LHP are associated with \(H(s) \) and poles in the RHP are associated with \(H(-s) \)

| \(\theta_k \) | \(0^\circ \) | \(\pm 135^\circ \) | \(\pm 120^\circ, 180^\circ \) | \(\pm 112.5^\circ, \pm 157.5^\circ \) | \(\pm 108^\circ, \pm 144^\circ, 180^\circ \) |
Magnitude Response of Butterworth Filter

```matlab
clear all; close all
Wp=1; % Passband cut-off frequency
n=4; % Order of butterworth filter
[z,p,k]=butter(n,Wp,'s');
s=tf('s');
H=zpk(z,p,k);
w=logspace(-2,1,1000);
[mag,phase]=bode(H,w);
Hdb=20*log10(squeeze(mag));

figure(1)
semilogx(w,Hdb,colors(n),'linewidth',2), hold on;
title('Magnitude Response','fontsize',16)
set(gca,'fontsize',14);
xlabel('\omega [rad/sec]','fontsize',16);
ylabel('Magnitude [dB]','fontsize',16);
legend({'n=' num2str(n)},'Location','southwest')
grid;
```
Design Example

Design a 1-KHz maximally flat lowpass filter with:
 • Attenuation at 10 kHz ≥ 2000

- Normalized prototype: $\omega_c = 1 \text{ rad/s}$, $\omega_s = 10 \text{ rad/s}$
 $$|H(j\omega_s)|^2 = \frac{1}{1 + \omega_s^{2n}} \leq \left(\frac{1}{2000}\right)^2 \rightarrow 10^{2n} \geq 4 \times 10^6 \quad \text{or} \quad n \geq 3.3$$
 Choose $n = 4$

- Pole locations
 $$s_p = e^{j\theta_k} \quad \text{where} \quad \theta_k = \pm 112.5^\circ, \pm 157.5^\circ$$
 $$s_{p1,2} = -0.383 \pm j0.924$$
 $$s_{p3,4} = -0.924 \pm j0.383$$

- Normalized transfer function
 $$H(s) = \frac{1}{\left(\frac{1}{s^2 + 0.765s + 1}\right)\left(\frac{1}{s^2 + 1.848s + 1}\right)}$$
 $$H_1 \quad Q = 1.306, \omega_c = 1$$
 $$H_2 \quad Q = 0.541, \omega_c = 1$$
Design Example

- Denormalized transfer function \(s = \frac{s}{\omega_c} \)

\[
H(s) = \frac{1.5585 \times 10^{15}}{(s^2 + (4.8 \times 10^3)s + 3.95 \times 10^7)(s^2 + (1.16 \times 10^4)s + 3.95 \times 10^7)}
\]

- \(Q = 1.306 \), \(\omega_c = 2\pi 10^3 \)
- \(H_1 \)
- \(Q = 0.541 \), \(\omega_c = 2\pi 10^3 \)
- \(H_2 \)

Magnitude Response

- \(H \) is Butterworth, \(n = 4 \)
- \(H_1 \), \(Q = 1.306 \), \(f_c = 1 \) KHz
- \(H_2 \), \(Q = 0.541 \), \(f_c = 1 \) KHz
Design Example - Discussion

- We can sharpen the transition in the previous example by increasing the quality factor of one of the two cascaded filters ($Q_1=3.5$ instead of 1.3)

- To alleviate the peaking problem in the previous response, we can reduce ω_{c2} ($\omega'_{c2} = 0.6\omega_{c1}$)

- Passband ripples are now existing
 - They can be tolerated in some applications

- The resulting response has steeper transition than Butterworth response
Equiripple Filter Approximation (Chebyshev I)

This type has a steeper transition than Butterworth filters of the same order but at the expense of higher passband ripples.

Magnitude response of this type is given by

\[|H(j\omega)|^2 = \frac{1}{1+|K(j\omega)|^2} \]

\[|K(j\omega)| = \varepsilon C_n(\omega) \]

\[C_n(\omega) = \cos(n \cos^{-1} \omega) \quad |\omega| \leq 1 \]

Going back and forth in ±1 range for \(|\omega| \leq 1\)

\(C_n \) is called Chebyshev’s polynomial

Defining the passband area of \(|K(j\omega)|\)
Equiripple Filter Approximation (Chebyshev I)

Chebyshev’s Polynomial

\[C_n(\omega) = \cos(n \cos^{-1}(\omega)) = \frac{e^{j\phi} + e^{-j\phi}}{2} \]

For the stopband \((\omega > 1)\)

\[\phi = \cos^{-1}(\omega) \text{ is complex} \]

Thus, \(C_n > 1\)

Since

\[\cos(n\phi) = \cosh(nj\phi) \]

and

\[j\phi = \cosh(\omega) \]

Then

\[C_n(\omega) = \cosh(n \cosh^{-1}(\omega)) \quad \text{for} \quad |\omega| > 1 \]
Properties of the Chebyshev polynomials

\[C_n = \cos(n \cdot \cos^{-1}(\omega)) \leq 1 \quad \omega \leq 1 \]

Faster response in the stopband

\[\downarrow \text{For } n > 3 \text{ and } \omega > 1 \]

In the passband, \(\omega < 1 \), \(C_n \) is limited to \(\pm 1 \), then, the ripple is determined by \(\varepsilon \)

\[\frac{\partial}{\partial \omega} C_n^2 = 2n\omega^{2n-1} \approx \left(\frac{2}{3}\right)^{n-1} \omega^{2n-1} \]

\[|N(j\omega)|^2 = \frac{1}{1 + \varepsilon^2 C_n^2} \]

The -3 dB frequency can be found as:

\[\varepsilon^2 C_n^2 (\omega_{-3\text{dB}}) = 1 \quad \omega > 1 \]

\[\omega_{-3\text{dB}} = \cosh\left(\frac{1}{n} \cosh^{-1} \frac{1}{\varepsilon}\right) \quad \omega > 1 \]
Pole Locations (Chebyshev Type I)
Magnitude Response (Chebyshev Type I)

```
clc, clear all, close all
Wp=1; % Edge of Passband
n=4; % Order of Chebyshev's filter
R=1; % Passband Ripples in dB
[z,p,k]=cheby1(n,R,Wp,'s');
H=zp2tf(z,p,k);
w=logspace(-2,1,1000);
[mag,phase]=bode(H,w);
Hdb=20*log10(squeeze(mag));

figure(1)
semilogx(w,Hdb,'linewidth',2);
hold on
plot([w(1) w(end)],[1 -1],'-b','linewidth',1)
title('Magnitude Response', 'fontsize',16)
set(gca,'fontsize',14);
xlabel('
\omega [rad/sec]', 'fontsize',16);
ylabel('Magnitude [dB]', 'fontsize',16);
legend('H_{\text{cheby1}}, n=4', 'Location', 'southwest')
axis([1e-2,1e1,-30,2])
grid;
```
Comparison of Design Steps for Maximally Flat and Chebyshev Cases

<table>
<thead>
<tr>
<th>Step</th>
<th>Maximally Flat</th>
<th>Chebyshev</th>
</tr>
</thead>
<tbody>
<tr>
<td>Find n</td>
<td>$n = \log\left[(10^{0.1\alpha_{\text{min}} - 1})/(10^{0.1\alpha_{\text{max}} - 1})\right] \times 2 \log(\omega_s)$ Round up to an integer</td>
<td>$n = \cosh^{-1}\left[(10^{0.1\alpha_{\text{min}} - 1})/(10^{0.1\alpha_{\text{max}} - 1})\right]^{0.5} \times 2 \cosh^{-1}(\omega_s)$ Round up to an integer</td>
</tr>
<tr>
<td>Find ε</td>
<td>$(10^{0.1\alpha_{\text{max}} - 1})^{1/2}$</td>
<td>$(10^{0.1\alpha_{\text{max}} - 1})^{1/2}$</td>
</tr>
<tr>
<td>Find pole locations</td>
<td>If n is odd [\theta_k = 0^\circ, \pm k \frac{180^\circ}{n}] [\sigma_k = \Omega_0 \cos(\theta_k)] [\pm \omega_k = \Omega_0 \sin(\theta_k)]</td>
<td>Find θ_k as in Butterworth case [\alpha = \frac{1}{n} \sinh^{-1}\left(\frac{1}{\varepsilon}\right)] [\pm \sigma_k = \sin(\theta_k) \sinh(\alpha)] [\pm \omega_k = \cos(\theta_k) \cosh(\alpha)]</td>
</tr>
</tbody>
</table>
Inverse Chebyshev Approximation
(Chebyshev Type II)

This type has
- Steeper transition compared to Butterworth filters (but not as steep as type I)
- No passband ripples
- Equal ripples in the stopband

Magnitude response of this type is given by
\[
|H(j\omega)|^2 = \frac{1}{1 + |K(j\omega)|^2}
\]
\[
|K(j\omega)| = \frac{1}{\varepsilon C_n\left(\frac{1}{\omega}\right)}
\]
\[
C_n\left(\frac{1}{\omega}\right) = \cos\left(n \cos^{-1}\frac{1}{\omega}\right)
\]
\[
|1/\omega| \leq 1, \quad \omega \geq 1
\]

Going back and forth in ±1 range for
\[
|\omega| \geq 1
\]

\(C_n\) is Chebyshev’s polynomial
Inverse Chebyshev Approximation (Chebyshev Type II)

For the passband ($\omega < 1$)

$$C_n \left(\frac{1}{\omega} \right) = \cosh \left(n \cosh^{-1} \left(\frac{1}{\omega} \right) \right) \quad \text{for } \omega < 1$$

$$\approx 2^{n-1} \left(\frac{1}{\omega} \right)^n \quad \text{for } \omega \ll 1$$

Attenuation α

$$\alpha = 10 \log \left(1 + \frac{1}{\epsilon^2 C_n^2 \left(\frac{1}{\omega} \right)} \right) \text{ dB}$$

$$\alpha_{\text{max}} = 10 \log \left(1 + \frac{1}{\epsilon^2 C_n^2 \left(\frac{1}{\omega_p} \right)} \right) \quad \alpha_{\text{min}} = 10 \log \left(1 + \frac{1}{\epsilon^2} \right)$$

To find the required order for a certain filtering template

$$C_n^2 \left(\frac{1}{\omega_p} \right) = \cosh \left(n \cosh^{-1} \left(\frac{1}{\omega_p} \right) \right) = \left[\frac{10^{\alpha_{\text{min}}/10} - 1}{10^{\alpha_{\text{max}}/10} - 1} \right]^{1/2}$$

$$n = \frac{\cosh^{-1} \left[\left(10^{\alpha_{\text{min}}/10} - 1 \right) / \left(10^{\alpha_{\text{max}}/10} - 1 \right) \right]^{1/2} \cosh^{-1} \left(\frac{1}{\omega_p} \right)}{\cosh^{-1} \left(\frac{1}{\omega_p} \right)}$$
Pole/zero Locations (Inverse Chebyshev)

Pole/zero locations

\[|H(j\omega)|^2 = \frac{1}{1 + \epsilon^{-2} C_n^{-2} \left(\frac{1}{\omega}\right)} = \frac{\epsilon^2 C_n^2 \left(\frac{1}{\omega}\right)}{1 + \epsilon^2 C_n^2 \left(\frac{1}{\omega}\right)} \]

We have imaginary zeros at \(\pm \omega_{z,k} \) where

\[C_n^2 \left(\frac{1}{\omega_{z,k}}\right) = 0 \]

\[\omega_{z,k} = \sec \left(\frac{k\pi}{2n}\right) \quad , \quad k = 1,3,5, \ldots, n \]

If \(s_k = \sigma_k + j\omega_k \) are the poles of Chebyshev filter

Then,

\[p_k = \alpha_k + j\beta_k = \frac{1}{s_k} \quad \text{are the poles of inverse Chebyshev filter} \]

Magnitude and quality factor of imaginary poles

\[|p_k| = \frac{1}{|s_k|} \quad Q_{iCheb} = Q_{Cheb} \]
Pole/zero Locations (Inverse Chebyshev)

Poles of Chebyshev and inverse Chebyshev filters are reciprocal.

Since the poles are on the radial line, they have the same pole Q.

Imaginary zeros create nulls in the stopband.
Magnitude Response (Inverse Chebyshev)

clc, clear all, close all
W0=1; % Edge of Stopband
n=4; % Order of Inverse Chebyshev filter
R=40; % Stopband Ripples
%(Minimum stopband attenuation in dB)

[z, p, k]=cheby2(n, R, W0, 's');
H=zpk(z, p, k);
w=logspace(-2, 1, 1000);
[mag, phase]=bode(H, w);
Hdb=20*log10(squeeze(mag));

figure(1)
semilogx(w, Hdb, 'b', 'linewidth', 2);
hold on
plot([w(1) w(end)], [-R -R], '--b', 'linewidth', 1)
axis([1e-2, 1e1, -60, 2])
legend([n' num2str(n)], 'Location', 'southwest')
set(gca, 'fontsize', 12);
xlabel('
\omega [rad/sec]', 'fontsize', 14);
ylabel('Mag [dB]', 'fontsize', 14);
grid;
Elliptic Filter Approximation

Elliptic filter

- Equal ripple passband and stopband
- Nulls in the stopband
- Sharpest transition band compared to same-order Butterworth and Chebyshev (Type I and II)
Pole/zero Locations (Elliptic)

Imaginary zeros creates nulls in the stopband
Magnitude Response (Elliptic)

```
clc, clear all, close all

Wp=1; % Edge of Passband
n=4; % Order of Elliptical filter
Rp=3; % Passband Ripple in dB
Rs=40; % Stopband Ripple in dB
%(Minimum stopband attenuation in dB)

[z, p, k] = ellip(n, Rp, Rs, Wp, 's');
H = zpk(z, p, k);
ω = logspace(-2, 1, 1000);
[mag, phase] = bode(H, ω);
Hdb = 20*log10(squeeze(mag));

figure(1)
semilogx(ω, Hdb, 'b', 'linewidth', 2);
hold on
plot([ω(1) ω(end)], [0 0], '--b', 'linewidth', 1);
plot([ω(1) ω(end)], [-Rp -Rp], '--b', 'linewidth', 1);
plot([ω(1) ω(end)], [-Rs -Rs], '--b', 'linewidth', 1);
axis([1e-2, 1e1, -60, 2])
legend(['n' num2str(n)], 'Location', 'southwest')
set(gca, 'fontsize', 12);
xlabel('
ω [rad/sec]', 'fontsize', 14);
ylabel('Mag [dB]', 'fontsize', 14);
grid;
```
Design Example

Design a lowpass filter with:

- \(\omega_p = 1 \) \(R_p = 1 \) dB
- \(\omega_s = 1.5 \) \(R_s = 40 \) dB

Matlab function *buttord*, *cheb1ord*, *cheb2ord*, and *ellipord* are used to find the least order filters that meet the given specs.
Design Example

Magnitude response

Filter approximation meeting the same specification yield

Order (Butterworth) > Order (Chebyshev) > Order (Elliptic)
Pole/zero locations

Note that Chebyshev and Eliptic approximations needs **high-Q** poles
Filter order for $R_p = 1$ and $R_s = 40$

Eliptic filter always yields the least order. *Is it always the best choice?*
Inverse Chebyshev filter has the least overshoot and ringing.

Ringing and overshoots can be problematic in some applications.

The pulse deformation is due to the fact that the filter introduces different time delay to the different frequency components (Phase distortion).
Phase Distortion

- Consider a filter with a transfer function
 \[H(j\omega) = |H(j\omega)|e^{j\phi(\omega)} \]
- Let us apply two sine waves at different frequencies
 \[v_{in}(t) = A_1 \sin(\omega_1 t) + A_2 \sin(\omega_2 t) \]
- The filter output is
 \[v_{out}(t) = A_1 |H(j\omega_1)| \sin \left(\omega_1 \left(t + \frac{\phi_1}{\omega_1} \right) \right) + A_2 |H(j\omega_2)| \sin \left(\omega_2 \left(t + \frac{\phi_2}{\omega_2} \right) \right) \]
- Assuming that the difference between \(|H(j\omega_1)|\) and \(|H(j\omega_2)|\) is small, the shape of the time domain output signal will be preserved if the two signals are delays by the same amount of time
 \[\frac{\phi(\omega_1)}{\omega_1} = \frac{\phi(\omega_2)}{\omega_2} \]
- This condition is satisfied for
 \[\phi(\omega) = t_0 \omega \quad t_0 = constant \]
- A filter with this characteristic is called “linear phase”
Linear Phase Filters

- For this type of filters: The magnitude of the signals is scaled equally, and they are delayed by the same amount of time

\[V_{\text{out}}(s) = V_{\text{in}}(s) \left[Ke^{-j\omega(t_0)} \right] \]

\[v_{\text{out}}(t) = Kv_{\text{in}}(t - t_0) \]

- The filter transfer function is

\[H(s) = Ke^{-j\omega t_0} \]

\[|H(j\omega)| = K \quad \phi(j\omega) = t_0\omega \]

- In this types of filters the phase delay \(\tau_{PD} = -\frac{\phi(j\omega)}{\omega} \), and the group delay \(\tau_{GD} = -\frac{d\phi(j\omega)}{\omega} \) are constant and equal
Linear Phase Filter Approximation

• For a typical lowpass filter

\[H(s) = \frac{K}{1 + a_1 s + a_2 s^2 + \cdots} = \frac{K}{[1 - a_2 \omega^2 + \cdots] + j \omega [a_1 - a_3 \omega^3 + \cdots]} \]

Thus the phase shift is given by

\[\phi(\omega) = \arg(H(j\omega)) = - \tan^{-1}\left(\frac{a_1 - a_3 \omega^3 + \cdots}{1 - a_2 \omega^2 + \cdots} \right) \]

• Using power-series expansion \(\tan^{-1}(x) = x - \frac{x^3}{3} + \frac{x^5}{5} - \cdots \)

The condition for linear phase is satisfied if

\[\frac{\partial}{\partial \omega} \tan^{-1}(x) = \frac{\partial}{\partial \omega} \left(x - \frac{x^3}{3} + \frac{x^5}{5} - \cdots \right) = \text{constant} \]

These are called Bessel polynomials, and the resulting networks are called Thomson filters

33
Typically the phase behavior of these filters shows some deviation.

Errors are measured in time.

\(\tau_{GD} \) is the Group Delay.

\[\tau_{GD} = -\frac{\partial \phi}{\partial \omega} \]
Bessel (Thomson) Filter Approximation

- All poles
- Poles are relatively low Q
- Maximally flat group delay (Maximally linear phase response)
- Poor stopband attenuation

http://www.rfcafe.com/references/electrical/bessel-poles.htm
Bessel Filter Approximation

1. **Magnitude Response**
 - **X-axis:** Angular frequency (rad/sec)
 - **Y-axis:** Magnitude (dB)
 - Black line: Bessel, $n=4$
 - Red line: Chebyshev, $n=4$

2. **Phase Response**
 - **X-axis:** Angular frequency (rad/sec)
 - **Y-axis:** Phase (degree)
 - Black line: Bessel, $n=4$
 - Red line: Chebyshev, $n=4$

3. **Step Response**
 - **X-axis:** Time (seconds)
 - **Y-axis:** Amplitude
 - Black line: Bessel, $n=4$
 - Red line: Chebyshev, $n=4$
Comparison of various LPF Group delay

Filter Design Conventional Procedure

- Transform your filter specs into a normalized LPF

- Filter order, zeros, poles and/or values for the passive elements can be obtained from tables or from a software package like FIESTA or Matlab

- If you use biquadratic sections, you need poles and zeros matching

- For ladder filters, the networks can be obtained from tables

- Transform the normalized transfer function to your filter by using
 - Filter transformation (LP to BP, HP, BR)
 - Frequency transformation
 - Impedance denormalization

- You obtain the transfer function or your passive network
Frequency Transformations

Lowpass to Highpass

\[s \Rightarrow \frac{1}{p} \quad \text{then} \quad H_{lp}(s) = \frac{H_0}{\sum_{i=0}^{n} a_i s^i} \quad \Rightarrow \quad H_{hp}(p) = \frac{H_0}{\sum_{i=0}^{n} a_i \left(\frac{1}{p}\right)^i} = \frac{H_0 p^n}{\sum_{i=0}^{n} a_i p^{n-i}} \]
✓ Lowpass to Highpass

\[H_{lp}(s) = \frac{H_0}{\sum_{i=0}^{n} a_i s^i} \iff H_{hp}(p) = \frac{H_0 p^n}{\sum_{i=0}^{n} a_i p^{n-i}} \]

✓ N zeros at \(\infty \) are translated to zero
✓ Poles are not the same!!!
✓ The main characteristics of the lowpass filter are maintained
✓ for a highpass filter with cutoff frequency at \(\omega_0 \), then

\[s \implies \frac{\omega_0}{p} \quad \text{This transformation scheme translates } \omega = 1 \text{ to } p = \omega_0 \]
Frequency Transformations

- The Lowpass to Highpass transformation can also be applied to the elements

<table>
<thead>
<tr>
<th>Element</th>
<th>Impedance</th>
<th>Transformed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistor</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Inductor</td>
<td>sL</td>
<td>$\frac{\omega_0 L}{p}$</td>
</tr>
<tr>
<td>Capacitor</td>
<td>$\frac{1}{sC}$</td>
<td>$\frac{p}{\omega_0 C}$</td>
</tr>
</tbody>
</table>

- The resistors are not affected
- L is transformed in a capacitor $C_{eq}=\frac{1}{\omega_0 L}$
- C is transformed in an inductor $L_{eq}=\frac{1}{\omega_0 C}$

Example: Design a 1KHz HP-filter from a LP prototype.
Frequency Transformations

- **Lowpass to Bandpass transformation**

\[
s \rightarrow \frac{p^2 + 1}{p} \quad \text{then} \quad H_{lp}(s) = \frac{H_0}{\sum_{i=0}^{n} a_i s^i} \quad \Rightarrow \quad H_{bp}(p) = \frac{H_0 p^n}{\sum_{i=0}^{2n} b_i (p)^i}
\]

- \(n\) zeros at \(\omega=0\) and \(n\) zeros at \(\infty\)
- Even number of poles
- The bandwidth of the BP is equal to the bandwidth of the LP

- In the \(p\)-domain

\[
p = jv = \frac{s}{2} \pm \sqrt{\left(\frac{s}{2}\right)^2 - 1} \quad \text{or} \quad v = \frac{\omega}{2} \pm \sqrt{\left(\frac{\omega}{2}\right)^2 + 1}
\]

\[
\begin{align*}
v_1 &= -0.5 + \sqrt{1.25} \\
v_2 &= 0.5 + \sqrt{1.25}
\end{align*}
\]
Frequency Transformations

Note that \(v_2 - v_1 = 1 \) and \(v_2 \cdot v_1 = 1 \)

- Lowpass prototype
- Bandpass filter
Frequency Transformations

General transformation

\[s = \frac{1}{BW} \left(\frac{p^2 + \omega_0^2}{p} \right) \]

\[v = \frac{BW \cdot \omega}{2} \pm \sqrt{\left(\frac{BW \cdot \omega}{2} \right)^2 + \omega_0^2} \]

-1 \Rightarrow v_1 = -\frac{BW}{2} + \sqrt{\frac{(BW)^2}{4} + \omega_0^2}
0 \Rightarrow \quad \omega_0
1 \Rightarrow v_2 = +\frac{BW}{2} + \sqrt{\frac{(BW)^2}{4} + \omega_0^2}

Lowpass prototype

Bandpass filter
The Lowpass to Bandpass transformation can also be applied to the elements:

<table>
<thead>
<tr>
<th>Element</th>
<th>Impedance</th>
<th>Transformed Impedance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistor</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Inductor</td>
<td>sL</td>
<td>$\frac{L}{BW} p + \frac{\omega_0^2 L}{BW} \frac{1}{p}$</td>
</tr>
<tr>
<td>Capacitor</td>
<td>$\frac{1}{sC}$</td>
<td>$\frac{1}{CBW} p + \frac{\omega_0^2 C}{BW} \frac{1}{p}$</td>
</tr>
</tbody>
</table>

- Note that for $\omega = \omega_0$
- For the inductor $Z_{eq} = 0$
- For the capacitor $Y_{eq} = 0$ ($Z_{eq} = \infty$)
Frequency Transformations

• In general, for double-resistance terminated ladder filters

\[\text{around } \omega = \omega_0 \]

\[H(s)\big|_{\omega = \omega_0} = \frac{R_L}{R_{\text{in}} + R_L} = \frac{1}{1 + \frac{R_L}{R_{\text{in}}}} \]

➢ In the passband, the transfer function can be very well controlled

➢ Low-sensitivity
Frequency Transformations

- **Lowpass to Bandreject transformation**

\[
s \mapsto \frac{1}{1 + \frac{1}{BW} \left(\frac{p^2 + \omega_0^2}{p} \right)}
\]

- Lowpass to Highpass transformation (notch at \(\omega=0 \))

- Shifting the frequency to \(\omega_0 \) and adjusting the bandwidth to \(BW \).

 Bandpass transformation!!!
Transformation Methods

• Transformation methods have been developed where a low pass filter can be converted to another type of filter by simply transforming the complex variable s.

• Matlab `lp2lp`, `lp2hp`, `lp2bp`, and `lp2bs` functions can be used to transform a low pass filter with normalized cutoff frequency, to another low-pass filter with any other specified frequency, or to a high pass filter, or to a band-pass filter, or to a band elimination filter, respectively.
LPF with normalized cutoff frequency, to another LPF with any other specified frequency

- Use the MATLAB `buttap` and `lp2lp` functions to find the transfer function of a third-order Butterworth low-pass filter with cutoff frequency $fc=2$ kHz.

```matlab
% Design 3 pole Butterworth low-pass filter (wcn=1 rad/s)
[z,p,k]=buttap(3);
[b,a]=zp2tf(z,p,k); % Compute num, den coefficients of this filter
(wcn=1rad/s)
f=1000:1500/50:10000; % Define frequency range to plot
w=2*pi*f; % Convert to rads/sec
fc=2000; % Define actual cutoff frequency at 2 KHz
wc=2*pi*fc; % Convert desired cutoff frequency to rads/sec
[bn,an]=lp2lp(b,a,wc); % Compute num, den of filter with fc = 2 kHz
Gsn=freqs(bn,an,w); % Compute transfer function of filter with fc = 2 kHz
semilogx(w,abs(Gsn));
grid;
xlabel('Radian Frequency w (rad/sec)')
ylabel('Magnitude of Transfer Function')
title('3-pole Butterworth low-pass filter with fc=2 kHz or wc = 12.57 kr/s')
```
LPF with normalized cutoff frequency, to another LPF with any other specified frequency.

3-pole Butterworth low-pass filter with $fc=2$ kHz or $wc = 12.57 \text{ kr/s}$
High-Pass Filter

- Use the MATLAB commands **cheb1ap** and **lp2hp** to find the transfer function of a 3-pole Chebyshev high-pass analog filter with cutoff frequency $fc = 5$ KHz.

% Design 3 pole Type 1 Chebyshev low-pass filter, wcn=1 rad/s
[z,p,k]=cheb1ap(3,3);
[b,a]=zp2tf(z,p,k); % Compute num, den coef. with wcn=1 rad/s
f=1000:100:100000; % Define frequency range to plot
fc=5000; % Define actual cutoff frequency at 5 KHz
wc=2*pi*fc; % Convert desired cutoff frequency to rads/sec
[bn,an]=lp2hp(b,a,wc); % Compute num, den of high-pass filter with fc =5KHz
Gsn=freqs.bn,an,2*pi*f); % Compute and plot transfer function of filter with fc = 5 KHz
semilogx(f,abs(Gsn));
grid;
xlabel('Frequency (Hz)');
ylabel('Magnitude of Transfer Function')
title('3-pole Type 1 Chebyshev high-pass filter with fc=5 KHz ')
High-Pass Filter

3-pole Chebyshev high-pass filter with fc=5 KHz
Band-Pass Filter

- Use the MATLAB functions `butter` and `lp2bp` to find the transfer function of a 3-pole Butterworth analog band-pass filter with the pass band frequency centered at \(f_0 = 4 \text{kHz} \), and bandwidth \(BW = 2 \text{KHz} \).

```matlab
[z,p,k]=butter(3); % Design 3 pole Butterworth low-pass filter with wc=1 rad/s
[b,a]=zp2tf(z,p,k); % Compute numerator and denominator coefficients for wc=1 rad/s
f=100:100:100000; % Define frequency range to plot
f0=4000; % Define centered frequency at 4 KHz
W0=2*pi*f0; % Convert desired centered frequency to rads/s
fbw=2000; % Define bandwidth
Bw=2*pi*fbw; % Convert desired bandwidth to rads/s
[bn,an]=lp2bp(b,a,W0,Bw); % Compute num, den of band-pass filter
% Compute and plot the magnitude of the transfer function of the band-pass filter
Gs=freqs(bn,an,2*pi*f);
semilogx(f,abs(Gs));
grid;
xlabel('Frequency f (Hz)');
ylabel('Magnitude of Transfer Function');
title('3-pole Butterworth band-pass filter with f0 = 4 KHz, BW = 2KHz')
```
3-pole Butterworth band-pass filter with $f_0 = 4$ KHz, $BW = 2$KHz
Band-Elimination (band-stop) Filter

- Use the MATLAB functions **buttap** and **lp2bs** to find the transfer function of a 3-pole Butterworth band-elimination (band-stop) filter with the stop band frequency centered at \(f_0 = 5 \) kHz, and bandwidth \(BW = 2 \) kHz.

\[
\begin{align*}
[z,p,k]=\text{buttap}(3); & \quad \% \text{Design 3-pole Butterworth low-pass filter, wcn = 1 r/s} \\
[b,a]=\text{zp2tf}(z,p,k); & \quad \% \text{Compute num, den coefficients of this filter, wcn=1 r/s} \\
f=100:100:100000; & \quad \% \text{Define frequency range to plot} \\
f0=5000; & \quad \% \text{Define centered frequency at 5 kHz} \\
W0=2*\pi*f0; & \quad \% \text{Convert centered frequency to r/s} \\
fbw=2000; & \quad \% \text{Define bandwidth} \\
Bw=2*\pi*fbw; & \quad \% \text{Convert bandwidth to r/s} \\
\end{align*}
\]

% Compute numerator and denominator coefficients of desired band stop filter
[bn,an]=\text{lp2bs}(b,a,W0,Bw);
% Compute and plot magnitude of the transfer function of the band stop filter
Gsn=\text{freqs}(bn,an,2*\pi*f);
\text{semilogx}(f,abs(Gsn));
\text{grid};
xlabel('Frequency in Hz'); ylabel('Magnitude of Transfer Function');
title('3-pole Butterworth band-elimination filter with f0=5 KHz, BW = 2 KHz')
Band-Elimination (band-stop) Filter

3-pole Butterworth band-elimination filter with $f_0=5$ KHz, $BW = 2$ KHz
How to find the minimum order to meet the filter specifications?
The following functions in Matlab can help you to find the minimum order required to meet the filter specifications:

- `Buttord` for butterworth
- `Cheb1ord` for chebyshev
- `Ellipord` for elliptic
- `Cheb2ord` for inverse chebyshev
Calculating the order and cutoff frequency of a inverse chebyshev filter

- Design a 4MHz Inverse Chebyshev approximation with Ap gain at passband corner. The stop band is 5.75MHz with -50dB gain at stop band.

```matlab
clear all;
Fp = 4e6; Wp=2*pi*Fp;
Fs=1.4375*Fp; Ws=2*pi*Fs;
Fplot = 20*Fs;
f = 1e6:Fplot/2e3:Fplot ;
w = 2*pi*f;
Ap = 1;
As = 50;
% Cheb2ord helps you find the order and wn (n and Wn) that %you can pass to cheby2 command.
[n, Wn] = cheb2ord(Wp, Ws, Ap, As, 's');
[z, p, k] = cheby2(n, As, Wn, 'low', 's');
[num, den] = cheby2(n, As, Wn, 'low', 's');
bode(num, den)
```
Bode Plot
References

Ladder Filters

- The ladder filter realization can be found in tables and/or can be obtained from FIESTA

- The elements must be transformed according to the frequency and impedance normalizations
Sensitivity

Definition

\[S_y^x = \frac{x \, \partial y}{y \, \partial x} \]

Y = transfer function and x = variable or element

Some properties:

\[S_{ky}^y = S_{kx}^y = S_x^y \]
\[S_{1/x}^y = S_{1/x}^y = -S_x^y \]
\[S_x^y = \frac{1}{n} S_x^n \]
\[S_x^y = S_y^x \quad S_{x^2}^x \]
\[\sum_{i=1}^{n} y_i \quad = \sum_{i=1}^{n} S_x^y \]
\[\sum_{i=1}^{n} y_i S_{x}^y = \sum_{i=1}^{n} y_i S_{x}^y \]

For a typical H(s)

\[H(s) = \frac{H_0}{\sum a_i(j\omega)^i} = -\frac{\sum a_i(j\omega)^i S_{a_j}^i(j\omega)^i}{\sum a_i(j\omega)^i} = -\frac{a_j(j\omega)^i}{\sum a_i(j\omega)^i} \]
Sensitivity

- Sensitivity is a measure of the change in the performance of the system due to a change in the nominal value of a certain element.

\[S^y_x = \frac{x}{y} \frac{\partial y}{\partial x} \quad \Rightarrow \quad S^y_x \approx \frac{x}{y} \frac{\Delta y}{\Delta x} \quad \text{or} \quad \frac{\Delta y}{y} = \left[S^y_x \right] \frac{\Delta x}{x} \]

Normalized variations at the output are determined by the sensitivity function and the normalized variations of the parameter.

Example:
If the sensitivity function is 10, then variations of \(\Delta x/x = 0.01(1\%) \) produce \(\Delta y/y = 0.1(10\%) \)

For a good design, the sensitivity functions should be < 5.
Effects of the partial positive feedback (negative resistors)?
Sensitivity

- For a typical amplifier
 \[A_v = \frac{g_m}{g_0} \]

 \[S_{g_m}^{A_v} = 1, \quad S_{g_0}^{A_v} = -1 \]

- Sometimes the dc gain is enhanced by using a negative resistor
 \[A_v = \frac{g_m}{g_0 - g_{02}} = \frac{g_m}{g_0} \frac{1}{1 - \frac{g_{02}}{g_0}} \]

 For large dc gain \(g_{02} = g_0 \)

 \[S_{g_m}^{A_v} = 1, \quad S_{g_0}^{A_v} = -\frac{g_0 S_{g_0}^{g_0}}{g_0 - g_{02}} = -\frac{1}{1 - \frac{g_{02}}{g_0}} \]

 The larger the gain improvement the larger the sensitivity!!!!
Typically the transfer function presents the form of a ratio of two polynomials.

For non-negative elements the coefficients are real and positive.

The poles are located in the left side of the s-plane.

System is stable.

BOUNDDED OUTPUT FOR BOUNDED INPUT
Properties of Network Functions:

Frequency Transformation

Most of the filter approximations are normalized to 1 rad/sec. Hence, it is necessary to denormalize the transfer function.

Using the frequency transformation

\[\omega = \frac{p}{\Omega_n} \]

1 rad/sec is translated to \(1/\Omega_n \) rad/sec

For inductors and capacitors:

\[jp(L) \Rightarrow j\omega \left(\frac{L}{\Omega_n} \right) \]

\[jp(C) \Rightarrow j\omega \left(\frac{C}{\Omega_n} \right) \]
Typically the network elements are normalized to 1 Ω. Hence an impedance denormalization scheme must be used

\[Z \Rightarrow \Omega_n Z \]

or

\[R \Rightarrow \Omega_n R \]
\[L \Rightarrow \Omega_n L \]
\[C \Rightarrow C/\Omega_n \]

Note that the transfer function is invariant with the impedance denormalization (RC and LC products remain constant！！！！)

In general both frequency and impedance denormalizations are used
• There is a number of conventional filter magnitude approximations.

• The choice of a particular approximation is application dependent.

• Besides the magnitude specifications, there exists also a phase (group delay) specification. For this the Thompson (Bessel) approximation is used.

• There are a host of Filter approximation software programs, including Matlab, Filsyn, and Fiesta2 developed at TAMU.

Acknowledgment: Thanks to my colleague Dr. Silva-Martínez for providing some of the material for this presentation.