• FULLY CURRENT-MODE

Input Signal: Current
Output Signal: Current

Basic Building Blocks are:

Inverting Integrators
Inverting (Current Amplifiers)

Primitive Circuit Implementations:

Single Transistor Inverting Amplifier
Simple Current Mirror
Capacitor
Current-Mode Implementation using OTA's

Integrator

Self Loop Integrator

\[R = \frac{1}{g_{mr}} \]
In order to fully obtain the benefits of current-mode techniques simpler circuits with reduced parasitics are desirable.

Primitive CM Circuits

Inverting Integrator

Amplifier (Multiplier by a constant)
Non-Inverting Integrator
3.3V Power supply
High frequency
Low area
Suitable for digital process
Good PSR
Poor linearity, efficiency (1% THD => $\eta < 4\%$)
Poor voltage gain

Low power supply (3.3V)
High frequency
Low area
Suitable for digital process
Very good PSR
Good Linearity (differential)
Excellent efficiency (≈ 100\%)
Poor common mode rejection
(a) Tunable CMOS class AB integrator
(b) Transistor Implementation with Mrn and Mrp operating in triode region
(c) Bias implementation (diffusion or poly resistors).

Linearity sufficient

Very high efficiency (> 100%) => AB, low power

Very high frequency

Small area

Low Power Supply

Linearity dep. on process variations

PSR poor
How to convert a Lossy Transconductance Integrator With Positive Feedback into a Current-Mode Lossy Integrator

\[
\frac{V_o}{V_{in}} = \frac{-g_{m1}Z}{1 - g_{m1}Z} = -\frac{g_{m1}}{sC_2 + (g_{m2} - g_{m1})}
\]
OTA-C Lossy Integrator With Single (Negative) Input OTA's

Current-Mode Version
Transistor Level Implementation

CM Lossy (Lossless) Integrator

\[I_{b2} \quad I_{b1} \quad I_{b3} \quad I_{b4} \quad I_{b0} \]

\[I_{in} \quad I_f \]

\[g_{m2} \quad g_{m1} \quad g_{m3} \quad g_{m4} \]

\[C \]

\[g_{m0} = g_{m1} \]
Redrawing the CM Integrator
Fully Pseudo Differential Integrator

\[
A_{d_m} = \frac{I_+^+I_o^-}{I_{in}^+ - I_{in}^-} = \frac{-\omega_u}{s + (A_N + A_P)\omega_u}
\]

\[
A_{c_m} = \frac{I_o^+ + I_o^-}{I_{in}^+ + I_{in}^-} = \frac{-\omega_u}{s + (A_N + A_P)\omega_u}
\]

\[A_N = A_P\]

\[(g_{m_N} = g_{m_P})\]
Continuous-Time Current-Mode Integrator Based On Current-Mirrors.
\[i_f = \frac{i_1 \frac{g_{m_2}}{g_{m_1}} - i_2}{g_{m_1}(g_{m_3} + sC) - g_{m_2}g_{m_4}} \cdot g_{m_1}g_{m_4} \]

\[i_f = g_{m_1}g_{m_4} \frac{i_1 \frac{g_{m_2}}{g_{m_1}} - i_2}{g_{m_1}g_{m_3} - g_{m_2}g_{m_4} + g_{m_1}sC} \]

\text{a) Lossless Integrator}

\[g_{m_1} = g_{m_2} \quad \text{and} \quad g_{m_3} = g_{m_4} \]

\[i_f = \frac{g_{m_4}}{sC} (i_1 - i_2) \]

\[i_{out} = K \frac{g_{m_4}}{sC} (i_1 - i_2) \]
b) Lossy Integrator

\[g_{m1} g_{m3} > g_{m2} g_{m4} \quad , \quad g_{m1} = k g_{m2} \quad , \quad g_{m3} = k g_{m4} \]

\[i_f = \frac{k}{k^2 - 1} \frac{ki_1 - i_2}{1 + \frac{sC}{k^2 - 1}} \frac{k}{g_{m4}} \quad , \quad k > 1 \]

i.e. \(k = 2 \)

\[i_f = \frac{2}{3} \frac{2i_1 - i_2}{1 + \frac{3sC}{g_{m4} \frac{3}{2}}} \]

If the parasitic capacitances and the output conductances are considered, then

\[i_f = \frac{-k_1(s - z_1)i_1}{(s + p_1)(s + p_2)} - \frac{k_2(s + z_2)}{(s + p_1)(s + p_2)} \]
Where

\[k_1 = \frac{g_o}{C_1}, \quad k_2 = \frac{g_m}{C_2} \]
\[p_1 = \frac{4g_o}{C_2}, \quad p_2 = \frac{g_m}{C_1} \]
\[z_1 = \frac{g_m g_m}{C_2 g_o}, \quad z_2 = \frac{g_m + g_o}{C_1} \]

All transistors are equal, and \(C_1 \) and \(C_2 \) are the lumped nodal capacitances associated with nodes 1 and 2. Note that \(p_1 \) moves from the origin to

\[p_1 \rightarrow \frac{\omega_o}{\alpha} = \frac{g_m}{4g_o} \]

And

\[Q = -\frac{g_m}{C_1} \frac{C_2}{g_m} \]
Let's consider the input and output impedance,

\[z_{\text{in}} = \left. \frac{V_1}{i_1} \right|_{i_2 = 0} = \frac{g_{m3} + g_{o2} + g_{o3} + sC_2}{-g_{m4}g_{m2} + (g_{m1} + g_{o1} + g_{o4} + sC_1)(g_{m3} + g_{o2} + g_{o3} + sC_2)} \]

\[z_{\text{in}} = \left. \frac{V_1}{i_1} \right|_{i_2 = 0} \approx \frac{g_{m3}(1 + sC_2 / g_{m3})}{-g_{m4}g_{m2} + g_{m1}g_{m3} + s(C_2g_{m1} + C_1g_{m3}) + s^2C_1C_2} \]
a) Lossless Integrator

\[z_{in} (0) \approx \frac{g_{m3}}{g_{m4} g_{m2} + g_{m1} g_{m3}} \bigg| \begin{array}{l}
g_{m1} = g_{m2} \\
g_{m3} = g_{m4} \end{array} \rightarrow \infty \]

b) Lossy Integrator

\[z_{in} (0) \approx \frac{k^2}{k^2 - 1} \frac{1}{g_{m1}} , \quad k > 0 \]

\[z_o (0) \approx \frac{1}{g_{o5}} \]