ECEN 457 (ESS)

Voltage References/Regulators PART 1

ECEN 457: Op-Amps and Applications Analog & Mixed-Signal Center Texas A&M University

Agenda

- Motivation
- Important Definitions

Voltage Regulator Market

Voltage References/Regulators

- The function of a voltage reference/regulator:
 - Provide stable dc voltage V_o starting from a

less stable voltage V_i

Basic connection of a voltage reference/regulator

Voltage References

• Voltage reference:

– Provides an even more stable $\rm V_{o}$ to serve as a standard for other circuits.

- Application:

• Digital multimeter: the full-scale accuracy is set by the internal voltage of suitable quality.

– Other applications:

- Power supplies
- AD/DA converters
- V-F / F-V converters

– Main requirements:

- Accuracy
- Stability
- To minimize errors due to self-heating:
 - Modest output-capabilities (few mA)

Voltage Regulators

• V₁ is usually a poorly specified voltage

• Output current capabilities are much higher (100mA-10A)

Voltage Regulators

- Two Types:
 - Linear regulators
 - Simple
 - Low noise
 - Poor Efficiency

- Switching regulators
 - High efficiency
 - Output voltage can be:
 - » Negative
 - » Higher than V_I
 - Complex
 - Require inductors
 - Noisier

Important Definitions

• Line Regulation:

$$Line - regulation = \frac{\Delta V_o}{\Delta V_I}$$

$$Line - regulation(\%) = \frac{\Delta V_o}{\Delta V_I} \cdot \frac{100}{V_o}$$

• Load Regulation:

$$Load - regulation = \frac{\Delta V_o}{\Delta I_o}$$

$$Load - regulation (\%) = 100 \frac{\frac{\Delta V_o}{V_o}}{\Delta I_o}$$

More Definitions

 Ripple (power supply) rejection ratio (RRR) (PSR):

$$RRR_{dB} = 20\log_{10}\left(\frac{\Delta V_{ri}}{\Delta V_{ro}}\right)$$

- Dropout Voltage:
 - The minimum difference between V_1 and V_0 for which the circuit still operates properly.

Example 11.1

- The data sheets of the uA7805 5-V voltage regulator (Fairchild) indicate that V_o typically changes by 3mV when V_I is varied from 7 V to 25 V, and by 5 mV when I_o is varied from 0.25 A to 0.75 A. Moreover, RRR_{dB} = 78dB at 120 Hz.
 - Estimate the typical line and load regulation of this device. What is the output impedance of the regulator?

$$\frac{\Delta V_o}{\Delta V_I} = \frac{3 \times 10^{-3}}{(25 - 7)} = 0.17 mV/V \qquad \qquad \frac{\Delta V_o}{\Delta V_I} (\%) = \frac{0.17 mV/V}{5V} x100 = 0.0033\%/V$$
$$\frac{\Delta V_o}{\Delta I_o} = \frac{5 \times 10^{-3}}{(0.75 - 0.25)} = 10 mV/A$$

- Estimate the amount of output ripple V_{ro} for every volt of $V_{ri.}$

$$V_{ro} = \frac{V_{ri}}{10^{(78/20)}} = 0.126 \times 10^{-3} \times V_{ri}$$

For 1-V at 120Hz ripple at the input: $V_{ro} = 0.126 \times 10^{-3} \times 1 = 126 mV$

More Definitions

• Thermal Coefficient of V_o:

$$TC(V_o) = \frac{\Delta V_o}{\Delta T}$$

$$TC(V_o)(\%) = \frac{\Delta V_o}{\Delta T} \cdot \frac{100}{V_o}$$

$$TC(V_o) - in - ppm = \frac{\Delta V_o}{\Delta T} \cdot \frac{10^6}{V_o}$$

Example 11.2

• The data sheets of the REF101KM 10-V precision voltage reference (Burr-Brown) give a typical line regulation of 0.001%/V, a typical load regulation of 0.001%/mA, and a maximum TC of 1 ppm/C. Find the variation in Vo brought about by: (a) a change of V₁ from 13.5 V to 35V; (b) a ±10mA change in I₀; (c) a temperature change from 0 C to 70 C.

- (a)

$$0.001\%/V = \frac{100}{(35-13.5)} \left(\frac{\Delta V_o}{10}\right)$$

$$\Delta V_o = 2.15mV$$
- (b)

$$0.001\%/mA = \frac{100}{(\pm 10mA)} \left(\frac{\Delta V_o}{10}\right)$$

$$\Delta V_o = \pm 1mV$$
- (c)

$$10^6 (\Delta V)$$

$$1 ppm/C = \frac{10^6}{(70^\circ C)} \left(\frac{\Delta V_o}{10}\right)$$
$$\Delta V_o = 0.7 mV$$

More Definitions

• Efficiency

$$\eta \equiv \frac{P_{OUT}}{P_{IN}} = \frac{V_{OUT}I_{OUT}}{V_{IN}(I_Q + I_{OUT})}$$

If
$$I_Q << I_{LOAD}$$
 $\eta \approx \frac{V_{OUT}}{V_{IN}} = \frac{V_{IN} - V_{DO}}{V_{IN}} = 1 - \frac{V_{DO}}{V_{IN}}$

Example: A 3.3 V linear regulator with 3.7 V < V_{IN} < 4.7 V, I_Q = 100 µA 1 mA < I_o < 100 mA. What is the minimum drop-out voltage? What is the maximum efficiency? What is the minimum efficiency?

$$\eta_{\max} = \frac{100mA \times 3.3}{(100mA + 100\mu A) \times 3.7} \times 100 = 89.1\% \quad \text{or} \quad \eta_{\max} \approx \left(1 - \frac{0.4V}{3.7}\right) \times 100 = 89.2\%$$

$$\eta_{\min} = \frac{1mA \times 3.3}{(1mA + 100\mu A) \times 4.7} \times 100 \cong 63.8\%$$

Next Class

- Bandgap voltage reference
- Voltage regulators
 - Shunt voltage regulators
 - Linear regulators