The two-integrator loop

Courtesy of Jorge Zarate

The standard form

$$
\frac{v_{o}}{v_{i}}=\frac{1 / s C}{R+s L+1 / s C} \rightarrow \frac{1 / L C}{s^{2}+R / L s+1 / L C}
$$

- IF the circuit is lossless $(R=0)$, the poles:

$$
s_{1,2}= \pm j \frac{1}{\sqrt{L C}}= \pm j \omega_{o}
$$

- Similarly to the Q of an inductor:

$$
Q=\frac{\omega_{o} L}{R}=\frac{1}{R} \sqrt{\frac{L}{C}}
$$

- Using our definitions: $\frac{v_{o}}{v_{i}}=\frac{\omega_{o}^{2}}{s^{2}+\omega_{o} / Q s+\omega_{o}^{2}}$

The second order circuit

- With an active implementation (gain -H) and normalizing to $s_{n}=s / \omega_{o}$.

$$
\frac{v_{L P}}{v_{i}}=\frac{-H}{s_{n}^{2}+1 / Q s_{n}+1} \rightarrow v_{L P}\left(s_{n}^{2}+1 / Q s_{n}+1\right)=-H v_{i}
$$

- In the time domain:

$$
\frac{d^{2} v_{L P}(t)}{d t^{2}}+\frac{1}{Q} \frac{d v_{L P}(t)}{d t}+v_{L P}(t)=-H v_{i}(t)
$$

- It is clear that we need two integrations to determine $v_{L p}$. To identify integration:

$$
\begin{gathered}
s(s+1 / Q) v_{L P}=-\left(H v_{i}+v_{L P}\right) \\
s v_{L P}=-\frac{1}{(s+1 / Q)}\left(H v_{i}+v_{L P}\right)=v B P
\end{gathered}
$$

- Now, $v_{L P}$ can be obtained if $v_{B P}$ is integrated

$$
\begin{gathered}
s v_{L P}=-\frac{1}{(s+1 / Q)}\left(H v_{i}+v_{L P}\right)=v B P \\
v_{L P}=\frac{1}{s} v_{B P}=\frac{1}{s}\left[-\frac{1}{(s+1 / Q)}\left(H v_{i}+v_{L P}\right)\right]
\end{gathered}
$$

- To further simplify:

$$
\begin{gathered}
-\left(H v_{i}+v_{L P}\right)=(s+1 / Q) v_{B P} \\
v_{B P}=-\frac{1}{s}\left(H v_{i}+v_{L P}+1 / Q v_{B P}\right)=-\frac{1}{s} v_{H P}
\end{gathered}
$$

- Now we can see than $v_{B P}$ can be obtained by integrating with a sign of inversion $v_{H P}$.
- Where $v_{H P}$ is nothing but the sum of three scaled voltages

$$
v_{H P}=\left(H v_{i}+v_{L P}+1 / Q v_{B P}\right)
$$

- Backing up:
- We said we could get $v_{L P}$ by integrating $v_{B P}$
- And that $v_{B P}$ is obtained by integrating, with a negative sign, $v_{H P}$
- And $v_{H P}$ is the summation of three scaled voltages, therefore:

$$
v_{L P}=\frac{1}{s}\left[\left(-\frac{1}{s}\right) v_{H P}\right]
$$

Block diagram

$$
\begin{gathered}
v_{L P}=\frac{-H}{s_{n}^{2}+1 / Q s_{n}+1} v_{i} \quad v_{B P}=\frac{-H s}{s_{n}^{2}+1 / Q s_{n}+1} v_{i} \\
v_{H P}=\frac{H s^{2}}{s_{n}^{2}+1 / Q s_{n}+1} v_{i}
\end{gathered}
$$

Tow-Thomas

- Block diagram calls for a lossy inverting integrator and for an ideal non-inverting integrator
- Replace the ideal non-inverting for an ideal inverting + inverting amplifier

- Where is the high-pass output?

Feed-forward Tow-Thomas

- Single-point output, multiple functions can be achieved

$$
\frac{v_{o}}{v_{i}}=-\frac{R_{8}}{R_{6}} \frac{s^{2}+\left(\frac{1}{R_{1} C_{1}}-\frac{R_{6}}{R_{4} R_{7} C_{1}}\right) s+\frac{R_{6}}{R_{3} R_{5} R_{7} C_{1} C_{2}}}{s^{2}+\left(\frac{1}{R_{1} C_{1}}\right) s+\frac{R_{8}}{R_{2} R_{3} R_{7} C_{1} C_{2}}}
$$

Simulink

- Obtain $\mathrm{V}_{\text {out }} /$ Vi or (V11/Vi), whatever is easier for you, also, map the blocks to gain/integrators time constants

Mason's Rule

- Direct paths:

1) $-\frac{K L P}{s} \cdot-K$
2) $-K B P 1$
3) $-K B P 2 \cdot-\frac{K}{s} \cdot-\frac{K o 1}{s}$

- Loops:

$$
\text { 1) }-\frac{K Q}{s} \quad \text { 2) } \frac{-K \cdot-K o 1 \cdot-K o 2}{s^{2}}
$$

$$
\begin{aligned}
& \frac{v_{o}}{v_{i}}=\frac{\frac{(K L P) K}{s}-\frac{(K B P 2) K(K o 1)}{s^{2}}-K B P 1\left(1+\frac{K Q}{s}\right)}{1+\frac{K Q}{s}+\frac{K K o 1 K o 2}{s^{2}}} \\
& \frac{v_{o}}{v_{i}}=-K B P 1 \frac{s^{2}+\left(K Q-\frac{(K L P) K}{K B P 1}\right) s+K B P 2(K o 1) K}{s^{2}+K Q s+K K o 1 K o 2}
\end{aligned}
$$

$$
K Q=\frac{1}{R_{1} C_{1}} \quad K L P=\frac{1}{R_{4} C_{1}} \quad K B P 1=\frac{R_{8}}{R_{6}} \quad K B P 2=\frac{1}{R_{5} C_{2}} \quad K=\frac{R_{8}}{R_{7}}
$$

$$
K o 1=\frac{1}{R_{3} C_{1}} \quad K o 2=\frac{1}{R_{2} C_{2}}
$$

