ECEN 457 (ESS)

Fall 2015

NODAL EQUATIONS BY INSPECTION

Knowing how to write systematically network analysis equations is primordial to good circuit design. Here we will review one popular analysis technique partially used in SPICE.

Consider the following example
a) Using conventional $\mathrm{KCL}_{\mathrm{Z}_{1}}$

$$
\begin{equation*}
\frac{\mathrm{V}_{\mathrm{in}}-\mathrm{V}_{\mathrm{x}}}{\mathrm{Z}_{1}}=\frac{\mathrm{V}_{\mathrm{x}}}{\mathrm{Z}_{3}}+\frac{\mathrm{V}_{\mathrm{x}}-\mathrm{V}_{\mathrm{o}}}{\mathrm{Z}_{2}}=0 \tag{1}
\end{equation*}
$$

Re - writing (1) becomes

$$
\begin{equation*}
\mathrm{V}_{\mathrm{x}}\left(\frac{1}{\mathrm{Z}_{1}}+\frac{1}{\mathrm{Z}_{3}}+\frac{1}{\mathrm{Z}_{2}}\right)-\frac{\mathrm{V}_{\mathrm{o}}}{\mathrm{Z}_{2}}=\frac{\mathrm{V}_{\mathrm{in}}}{\mathrm{Z}_{1}} \tag{1'}
\end{equation*}
$$

Conventional,

$$
\begin{equation*}
\frac{\mathrm{V}_{\mathrm{x}}-\mathrm{V}_{\mathrm{o}}}{\mathrm{Z}_{2}}=\frac{\mathrm{V}_{\mathrm{o}}}{\mathrm{Z}_{4}} \tag{2}
\end{equation*}
$$

Re-writting (2) becomes

$$
-\frac{\mathrm{V}_{\mathrm{x}}}{\mathrm{Z}_{2}}+\mathrm{V}_{\mathrm{o}}\left(\frac{1}{\mathrm{Z}_{4}}+\frac{1}{\mathrm{Z}_{2}}\right)=0
$$

How can we write directly by inspection Eqs (1') and (2')?

We can do it using the indefinite admittance matrix which must be expressed as

$$
\mathrm{Y} \underline{\mathrm{~V}}=\mathrm{I}
$$

Where Y is the indefinite admittance matrix, V is the nodal voltage vector and I is the independent current source vector. In the example here presented we have two independent nodal voltage V_{x} and V_{o}. Thus we can write directly the equations (1^{\prime}) and (2^{\prime}).

$$
\mathrm{V}_{\mathrm{x}}\left(\frac{1}{\mathrm{Z}_{1}}+\frac{1}{\mathrm{Z}_{2}}+\frac{1}{\mathrm{Z}_{3}}\right)-\frac{\mathrm{V}_{\mathrm{o}}}{\mathrm{Z}_{2}}-\frac{\mathrm{V}_{\mathrm{in}}}{\mathrm{Z}_{1}}=0
$$

or equivalent

$$
\mathrm{V}_{\mathrm{x}}\left(\frac{1}{\mathrm{Z}_{1}}+\frac{1}{\mathrm{Z}_{2}}+\frac{1}{\mathrm{Z}_{3}}\right)-\frac{\mathrm{V}_{\mathrm{o}}}{\mathrm{Z}_{2}}=\frac{\mathrm{V}_{\mathrm{in}}}{\mathrm{Z}_{1}}
$$

Note that for the node under analysis we multiply V_{x} by the sum of all admittances connected to node X minus the contributions of the neighbor connected nodes, in this case $\mathrm{V}_{\text {in }}$ and V_{o}. These (negative) contributions consist of the neighbor voltages multiplied by the sum of the admittances connected between V_{x} and $V_{\text {in }}$ and V_{o}.

Let us practice with node at V_{o}, thus
$\mathrm{V}_{\mathrm{o}}\left(\frac{1}{\mathrm{Z}_{2}}+\frac{1}{\mathrm{Z}_{4}}\right)-\frac{\mathrm{V}_{\mathrm{x}}}{\mathrm{Z}_{2}}=0$

Consider next a more general example.

Let us assume a Norton transformation and that the ground node becomes different from zero and equal to V_{y} i.e.

Now we will have 3 nodal equations

$$
\begin{align*}
& \mathrm{V}_{\mathrm{x}}\left(\frac{1}{\mathrm{Z}_{1}}+\frac{1}{\mathrm{Z}_{2}}+\frac{1}{\mathrm{Z}_{3}}\right)-\mathrm{V}_{\mathrm{y}}\left(\frac{1}{\mathrm{Z}_{1}}+\frac{1}{\mathrm{Z}_{3}}\right)-\frac{\mathrm{V}_{\mathrm{o}}}{\mathrm{Z}_{2}}=\mathrm{I}_{\mathrm{in}} \tag{3}\\
& -\mathrm{V}_{\mathrm{x}}\left(\frac{1}{\mathrm{Z}_{1}}+\frac{1}{\mathrm{Z}_{3}}\right)+\mathrm{V}_{\mathrm{y}}\left(\frac{1}{\mathrm{Z}_{1}}+\frac{1}{\mathrm{Z}_{3}}+\frac{1}{\mathrm{Z}_{4}}\right)-\frac{\mathrm{V}_{\mathrm{o}}}{\mathrm{Z}_{4}}=-\mathrm{I}_{\mathrm{in}} \tag{4}\\
& -\frac{\mathrm{V}_{\mathrm{x}}}{\mathrm{Z}_{2}} \quad-\frac{\mathrm{V}_{\mathrm{y}}}{\mathrm{Z}_{4}}+\mathrm{V}_{\mathrm{o}}\left(\frac{1}{\mathrm{Z}_{2}}+\frac{1}{\mathrm{Z}_{4}}\right)=0 \tag{5}
\end{align*}
$$

Notice that if you sum all the coefficients of V_{x}, V_{y} or V_{o} the sum is zero, which is a consequence of KCL.

Observe that you can write equations (3), (4), and (5) in a matrix form.

Here you can verify that the sum of any column or row of Y is zero. Also observe the symmetry of the matrix Y due to the fact that we do not have depended sources.

Next let us consider another example to illustrate how the dependent sources can be incorporated in the analysis.

where

$$
\mathrm{I}_{\mathrm{D}}=\mathrm{G}_{\mathrm{m}}\left(\mathrm{~V}_{\mathrm{x}}-\mathrm{V}_{\mathrm{y}}\right)
$$

We can go directly to our previous matrix and incorporate I_{D} or writing the 3 nodal equations.

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{x}}\left(\frac{1}{\mathrm{Z}_{1}}+\frac{1}{\mathrm{Z}_{2}}+\frac{1}{\mathrm{Z}_{3}}\right)-\mathrm{V}_{\mathrm{y}}\left(\frac{1}{\mathrm{Z}_{1}}+\frac{1}{\mathrm{Z}_{3}}\right)-\frac{\mathrm{V}_{0}}{\mathrm{Z}_{2}}=\frac{\mathrm{V}_{\text {in }}}{\mathrm{Z}_{1}} \\
& -\mathrm{V}_{\mathrm{x}}\left(\frac{1}{\mathrm{Z}_{1}}+\frac{1}{\mathrm{Z}_{3}}\right)+\mathrm{V}_{\mathrm{y}}\left(\frac{1}{\mathrm{Z}_{1}}+\frac{1}{\mathrm{Z}_{3}}+\frac{1}{\mathrm{Z}_{4}}\right)-\frac{\mathrm{V}_{0}}{\mathrm{Z}_{4}}=-\frac{\mathrm{V}_{\text {in }}}{\mathrm{Z}_{1}}+\mathrm{G}_{\mathrm{m}}\left(\mathrm{~V}_{\mathrm{x}}-\mathrm{V}_{\mathrm{y}}\right) \\
& -\frac{\mathrm{V}_{\mathrm{x}}}{\mathrm{Z}_{2}} \quad-\mathrm{V}_{\mathrm{y}} \frac{1}{\mathrm{Z}_{4}} \quad+\mathrm{V}_{\mathrm{o}}\left(\frac{1}{\mathrm{Z}_{2}}+\frac{1}{\mathrm{Z}_{4}}\right)=-\mathrm{G}_{\mathrm{m}}\left(\mathrm{~V}_{\mathrm{x}}-\mathrm{V}_{\mathrm{y}}\right)
\end{aligned}
$$

Note that we must have only independent sources on the right side of the equations. Thus we will move the dependent sources into the left side of the equations.

$$
\mathrm{V}_{\mathrm{x}}\left(\frac{1}{\mathrm{Z}_{1}}+\frac{1}{\mathrm{Z}_{2}}+\frac{1}{\mathrm{Z}_{3}}\right)-\mathrm{V}_{\mathrm{y}}\left(\frac{1}{\mathrm{Z}_{1}}+\frac{1}{\mathrm{Z}_{3}}\right)-\frac{\mathrm{V}_{\mathrm{o}}}{\mathrm{Z}_{2}}=\frac{\mathrm{V}_{\mathrm{in}}}{\mathrm{Z}_{1}}
$$

$-V_{x}\left(\frac{1}{Z_{1}}+\frac{1}{Z_{3}}+\underset{\jmath}{G_{m}}\right)+V_{y}\left(\frac{1}{Z_{1}}+\frac{1}{Z_{3}}+\frac{1}{Z_{4}}+G_{m}\right)-\frac{V_{0}}{Z_{4}}=-\frac{V_{\text {in }}}{Z_{1}}$
$-\mathrm{V}_{\mathrm{x}}\left(\frac{1}{\mathrm{Z}_{2}}-\mathrm{G}_{\mathrm{m}}\right)-\mathrm{V}_{\mathrm{y}}\left(\frac{1}{\mathrm{Z}_{4}}+\underset{\mathrm{j}}{\mathrm{G}_{\mathrm{m}}}\right)+\mathrm{V}_{\mathrm{o}}\left(\frac{1}{\mathrm{Z}_{2}}+\frac{1}{\mathrm{Z}_{4}}\right)=0$

Observe that for all floating nodes the sum of the coefficients of all nodal voltages is zero.

EXAMPLES TO ILLUSTRATE NODAL ANALYSIS

EXAMPLE 1

Small Signal Circuit

- Two Nodal Equations for V_{o} and V_{s}.

$$
\frac{\mathrm{V}_{\mathrm{o}}}{\mathrm{R}_{\mathrm{L}}}=-\mathrm{g}_{\mathrm{m}}\left(\mathrm{~V}_{\mathrm{in}}-\mathrm{V}_{\mathrm{s}}\right)
$$

$$
\frac{\mathrm{V}_{\mathrm{s}}}{\mathrm{R}_{\mathrm{s}}}=\mathrm{g}_{\mathrm{m}}\left(\mathrm{~V}_{\mathrm{in}}-\mathrm{V}_{\mathrm{s}}\right)
$$

Solving these two equations yields

$$
\frac{\mathrm{V}_{\mathrm{o}}}{\mathrm{~V}_{\mathrm{in}}}=\frac{-\mathrm{g}_{\mathrm{m}} \mathrm{R}_{\mathrm{L}}}{1+\mathrm{g}_{\mathrm{m}} \mathrm{R}_{\mathrm{s}}}
$$

Example 2

Assume first ideal op amps. $\quad\left(\right.$ Note $\left.V_{x}=V_{y}\right)$

$$
\begin{align*}
& \mathrm{V}_{\mathrm{x}}\left(\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}\right)-\frac{\mathrm{V}_{1}}{\mathrm{R}_{1}}=0 \tag{1a}\\
& \mathrm{~V}_{\mathrm{x}}\left(\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}\right)-\frac{\mathrm{V}_{\mathrm{Z}}}{\mathrm{R}_{2}}=\frac{\mathrm{V}_{2}}{\mathrm{R}_{1}} \tag{1b}
\end{align*}
$$

Also note that

$$
\begin{align*}
& V_{z}=-\frac{R_{3}}{R_{G}} V_{o} \tag{1c}\\
& \text { (1b) - (1a) yields } \\
& -\frac{\mathrm{V}_{\mathrm{Z}}}{\mathrm{R}_{2}}+\frac{\mathrm{V}_{1}}{\mathrm{R}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{R}_{1}} \Rightarrow-\left(-\frac{\mathrm{R}_{3}}{\mathrm{R}_{\mathrm{G}}}\right) \frac{\mathrm{V}_{\mathrm{o}}}{\mathrm{R}_{2}}+\frac{\mathrm{V}_{1}}{\mathrm{R}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{R}_{1}} \\
& \mathrm{~V}_{\mathrm{o}}=\frac{\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right)}{\mathrm{R}_{1}} \frac{\mathrm{R}_{\mathrm{G}} \mathrm{R}_{2}}{\mathrm{R}_{3}}=\frac{\mathrm{R}_{2} \mathrm{R}_{\mathrm{G}}}{\mathrm{R}_{1} \mathrm{R}_{3}}\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right) \\
& \mathrm{V}_{\mathrm{o}}=\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right) \frac{\mathrm{R}_{2} \mathrm{R}_{\mathrm{G}}}{\mathrm{R}_{1} \mathrm{R}_{3}}
\end{align*}
$$

Example 3

If A is not ideal we can write

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{o}}=\mathrm{A}\left(\mathrm{~V}_{2}-\mathrm{V}_{\mathrm{x}}\right) \\
& \text { or } \\
& \mathrm{V}_{\mathrm{x}}=\mathrm{V}_{2}-\frac{\mathrm{V}_{\mathrm{o}}}{\mathrm{~A}}
\end{aligned}
$$

Thus we can solve the following equivalent circuit replacing V_{x}.

Thus (multiplying both sides by Z_{F})

$$
\mathrm{V}_{\mathrm{o}}=\frac{-\frac{\mathrm{Z}_{\mathrm{F}}}{\mathrm{Z}_{1}} \mathrm{~V}_{1}}{1+\frac{1}{\mathrm{~A}}\left(1+\frac{\mathrm{Z}_{\mathrm{F}}}{\mathrm{Z}_{1}}\right)}+\frac{\left(1+\frac{\mathrm{Z}_{\mathrm{F}}}{\mathrm{Z}_{1}}\right) \mathrm{V}_{2}}{1+\frac{1}{\mathrm{~A}}\left(1+\frac{\mathrm{Z}_{\mathrm{F}}}{\mathrm{Z}_{1}}\right)}
$$

Note that
$V_{n_{1,2}}= \begin{cases}0 & \text { for ideal } A_{1,2} \\ -\frac{V_{B, O}}{A} & \text { for finite } A_{1,2}\end{cases}$

Let us assume the ideal case then eliminating V_{B} from (1) and (2) yields.

$$
\begin{aligned}
& -V_{\mathrm{B}}=\frac{\mathrm{V}_{\mathrm{in}}}{\mathrm{sR} \mathrm{~K}_{\mathrm{K}} \mathrm{C}_{1}}+\frac{\mathrm{V}_{\mathrm{o}}}{s \mathrm{R}_{\mathrm{o} 1} \mathrm{C}_{1}} \\
& \frac{\mathrm{~V}_{\mathrm{o}}}{\mathrm{~V}_{\mathrm{in}}}=\frac{-\frac{1}{\mathrm{R}_{\mathrm{K}} \mathrm{R}_{\mathrm{o} 2} \mathrm{C}_{1} \mathrm{C}_{2}}}{\mathrm{~s}^{2}+\mathrm{s} \frac{1}{\mathrm{R}_{\mathrm{Q}} \mathrm{C}_{2}}+\frac{1}{\mathrm{R}_{\mathrm{o} 1} \mathrm{R}_{\mathrm{o} 2} \mathrm{C}_{1} \mathrm{C}_{2}}}
\end{aligned}
$$

Reader. Solve for $V_{n_{1}}=-\frac{V_{B}}{A_{1}}$ and $V_{n_{2}}=-\frac{V_{0}}{A_{2}}$

SUMMARY OF NODE METHOD

$$
\mathrm{YV}=\mathrm{I}_{\mathrm{s}}
$$

Where Y is a $\mathrm{n}-1 \times \mathrm{n}-1$ array, V is a vector, representing the unknown node voltages, of dimension $\mathrm{n}-1$. I_{s} is also a vector of $\mathrm{n}-1$ dimension of the know current sources.

How to generate systematically the admittance matrix Y:

$$
\mathrm{Y}=\mathrm{i}\left[\begin{array}{c}
\mathrm{i} \\
\mathrm{i} \\
\cdots \frac{1}{\mathrm{Z}_{\mathrm{k}}} \cdots \frac{-1}{\mathrm{Z}_{\mathrm{k}}} \\
\cdots-\frac{1}{\mathrm{Z}_{\mathrm{k}}} \cdots \\
\mathrm{Z}_{\mathrm{k}}
\end{array}\right]
$$

$$
I_{s}=\begin{gathered}
\text { (i) }
\end{gathered}\left[\begin{array}{c}
i_{m} \\
\vdots \\
-i_{m}
\end{array}\right]
$$

For voltage sources we can consider two illustrative cases:

GOUNDED VOLTAGE SOURCES

FLOATING VOLTGE SOURCES

$$
\begin{aligned}
& \left(G_{1}+G_{2}+G_{3}\right) V_{2}-G_{3} V_{3}=-G_{1} V_{s} \\
& -G_{3} V_{2}+\left(G_{3}+G_{4}\right) V_{3}=0
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{c}
\mathrm{G}_{1}+\mathrm{G}_{3}+\mathrm{G}_{2} \\
-\mathrm{G}_{1} \\
\mathrm{G}_{3}+\mathrm{G}_{4}+\mathrm{G}_{5}
\end{array}\right]\left[\begin{array}{l}
\mathrm{V}_{1} \\
\mathrm{~V}_{2}
\end{array}\right]=\left[\begin{array}{c}
\frac{\mathrm{V}_{\mathrm{s}}}{\mathrm{R}_{1}} \\
\frac{\mathrm{~V}_{\mathrm{s}}}{\mathrm{R}_{5}}
\end{array}\right]} \\
& \text { (1) } \mathrm{G}_{1} \mathrm{v}_{1}=-\mathrm{i}_{\mathrm{v}}
\end{aligned}
$$

(2) $\left(\mathrm{G}_{2}+\mathrm{G}_{3}\right) \mathrm{V}_{2}-\mathrm{G}_{3} \mathrm{~V}_{3}=\mathrm{i}_{\mathrm{v}}$

$$
\text { (3) }-\mathrm{G}_{3} \mathrm{~V}_{2}+\left(\mathrm{G}_{3}+\mathrm{G}_{4}\right) \mathrm{V}_{3}=0
$$

but

$$
\begin{aligned}
& \mathrm{V}_{1}-\mathrm{V}_{2}=\mathrm{V}_{\mathrm{s}} \\
& \text { or } \mathrm{V}_{1}=\mathrm{V}_{\mathrm{s}}+\mathrm{V}_{2}
\end{aligned}
$$

By adding equations (1) and (2) and substituting V_{1}, we can obtain

