FALL 2013
Name \qquad
ECEN 457 (ESS)

EXAM \#1

This is a closed book and notes exam. This exam is worth 15% of your total grade.

Prob.	Maximum	Yours
1	3	
2	4	
3	4	
4	4	
Extra Credit	1	
Total	16	

Prob. 1. (Macromodeling). Propose a macromodel of the transfer function $\mathrm{H}(\mathrm{s})$ using only SPICE primitives (i.e, passive components and dependent and independent sources)

$$
\mathrm{H}(\mathrm{~s})=\mathrm{K} \frac{\left(1+\mathrm{s} / \omega_{\mathrm{z}}\right)}{\left(1+\mathrm{s} / \omega_{\mathrm{p} 1}\right)\left(1+\mathrm{s} / \omega_{\mathrm{p} 2}\right)\left(1+\mathrm{s} / \omega_{\mathrm{p} 3}\right)}
$$

Prob. 2. (Instrumentation). Obtain the closed form of the transfer function $H(s)=\frac{V_{\mathrm{o}}(\mathrm{s})}{\mathrm{V}_{\mathrm{in}}(\mathrm{s})}$ of the following circuit. Where $\mathrm{V}_{\text {in }}(\mathrm{s})=\mathrm{V}_{1}-\mathrm{V}_{2}$.

Prob. 3. (Feedback AMP)
a) Obtain the transfer frunction $\mathrm{H}=\mathrm{V}_{0} / \mathrm{V}_{\text {in }}$ assuming a finite open loop op amp gain A_{0}.
b) The ideal voltage $-R_{F} / R_{1}$ is not obtained due to the finite A_{0}. For $R_{F} / R_{1}=9$, determine the value of A_{0} for $\mathrm{a} \pm 1 \%$ voltage gain deviation (ε).
c) Determine the normalized sensitivity expression for $S_{A_{0}}^{H}$

Prob. 4. (Input Offset Voltage)

Assume an op amp with an open loop gain $\mathrm{A}_{\text {min }}=10^{4} \mathrm{~V} / \mathrm{V}$, $\mathrm{V}_{\text {oso(max) }}=2 \mathrm{mV}$, and a $\mathrm{CMRR}_{\mathrm{db}(\text { min })}=\mathrm{PSRR}_{\mathrm{db}(\text { min })}=74 \mathrm{~dB}$ is connected as a voltage follower configuration. $\left(\mathrm{TC}\left(\mathrm{V}_{\mathrm{os}}\right)_{\text {ovg }}=3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\right)$, Supply $= \pm 15 \mathrm{~V}, \mathrm{~T}=35^{\circ} \mathrm{C}$
i) Estimate the worst case departure of v_{o} from the ideal when $v_{i}=0 V$
ii) Repeat with $v_{i}=10 \mathrm{~V}$
iii) Repeat the problem if the supply voltages are decreased from $\pm 15 \mathrm{~V}$ to $\pm 12 \mathrm{~V}$

EXTRA CREDIT (No partial credit)

Describe the conditions of resistors (conductances) that allow the output V_{o} to be written as

