Name _____

EXAM #1

This is a closed book and notes exam. This exam is worth 15% of your total grade.

Prob.	Maximum	Yours
1	3	
2	4	
3	4	
4	4	
Extra Credit	1	
Total	16	

Prob. 1. (Macromodeling). Propose a macromodel of the transfer function H(s) using only SPICE primitives (i.e, passive components and dependent and independent sources)

$$H(s) = K \frac{(1 + s/\omega_z)}{(1 + s/\omega_{p1})(1 + s/\omega_{p2})(1 + s/\omega_{p3})}$$

Prob. 2. (Instrumentation). Obtain the closed form of the transfer function $H(s) = \frac{V_o(s)}{V_{in}(s)}$ of the following circuit. Where $V_{in}(s) = V_1 - V_2$.

Prob. 3. (Feedback AMP)

- a) Obtain the transfer frunction $H = V_0/V_{in}$ assuming a finite open loop op amp gain A_0 .
- b) The ideal voltage $-R_F/R_1$ is not obtained due to the finite A_o. For $R_F/R_1=9$, determine the value of A_o for a ± 1% voltage gain deviation (ϵ).
- c) Determine the normalized sensitivity expression for $S_{\mathrm{A}_{\mathrm{o}}}^{\mathrm{H}}$

Prob. 4. (Input Offset Voltage)

Assume an op amp with an open loop gain $A_{min} = 10^4 V/V$, $V_{oso(max)} = 2mV$, and a CMRR_{db(min)} = PSRR_{db(min)} = 74dB is connected as a voltage follower configuration. $(TC(V_{os})_{ovg} = 3\mu V/^{o}C)$, Supply=±15V, T=35°C

- i) Estimate the worst case departure of v_o from the ideal when $v_i = 0V$
- ii) Repeat with $v_i = 10V$
- iii) Repeat the problem if the supply voltages are decreased from $\pm~15V$ to $\pm~12V$

EXTRA CREDIT (No partial credit)

Describe the conditions of resistors (conductances) that allow the output $V_{\mbox{\scriptsize o}}$ to be written as

