ECEN 457 (ESS)

TAMU

ACTIVE-RC FILTER ARCHITECTURES

- We will discuss first-order and second-order filters based on general inverter configurations.
- This approach will be based on two key building blocks.

$$
\begin{equation*}
\frac{\mathrm{V}_{0}}{\mathrm{~V}_{\mathrm{i}}}=\frac{\mathrm{KA}_{\mathrm{F}}}{1+\beta \mathrm{A}_{\mathrm{F}}} \tag{2}
\end{equation*}
$$

Z_{1}
or
Z_{F}
Can be:

EXAMPLE: Let $\mathrm{Z}_{1}=\frac{\mathrm{R}_{1}}{1+\mathrm{sR}_{1} \mathrm{C}_{1}}, \quad \mathrm{Z}_{\mathrm{F}}=\frac{\mathrm{R}_{\mathrm{F}}}{1+\mathrm{s} \mathrm{R}_{\mathrm{F}} \mathrm{C}_{\mathrm{F}}}$
Assuming ideal op amp A $\longrightarrow \infty$. Then using

$$
\begin{equation*}
\mathrm{H}_{1}=\frac{\mathrm{V}_{01}}{\mathrm{~V}_{1}}=-\frac{\mathrm{R}_{\mathrm{F}} / \mathrm{R}_{1}\left(1+\mathrm{sR}_{1} \mathrm{C}_{1}\right)}{\left(1+\mathrm{sR}_{\mathrm{F}} \mathrm{C}_{\mathrm{F}}\right)}=-\frac{\mathrm{K}_{\mathrm{n}}\left(1+\mathrm{s} / \omega_{\mathrm{z}}\right)}{\left(1+\mathrm{s} / \omega_{\mathrm{p}}\right)} \tag{1}
\end{equation*}
$$

Particular cases are easily derived from (3) and (4)

- Integrator: $\mathrm{C}_{1} \rightarrow 0, \mathrm{R}_{\mathrm{F}} \rightarrow \infty$

$$
\mathrm{H}_{1} \cong-\frac{\mathrm{R}_{\mathrm{F}}}{\mathrm{R}_{1}} \frac{1}{s \mathrm{R}_{\mathrm{F}} \mathrm{C}_{\mathrm{F}}}=-\frac{1}{\mathrm{sC} \mathrm{C}_{\mathrm{F}} \mathrm{R}_{1}}
$$

— Differentiator ; $\mathrm{R}_{1} \rightarrow \infty \quad, \quad \mathrm{C}_{\mathrm{F}} \rightarrow 0$

$$
\mathrm{H}_{1} \cong-\frac{\mathrm{R}_{\mathrm{F}}}{\mathrm{R}_{1}} \mathrm{sR}{ }_{1} \mathrm{C}_{1}=-\mathrm{sR} \mathrm{~F}_{\mathrm{F}} \mathrm{C}_{1}
$$

- Low-Pass: $\mathrm{C}_{1}=0$
$\mathrm{H}_{1}=\frac{-\frac{\mathrm{R}_{\mathrm{F}}}{\mathrm{R}_{1}}}{1+\mathrm{sR}_{\mathrm{F}} \mathrm{C}_{\mathrm{F}}}$
- High-Pass: $\mathrm{R}_{1} \rightarrow \infty$
$H_{1} \cong-\frac{R_{F}}{R_{1}} \frac{s R_{1} C_{1}}{1+s R_{F} C_{F}}$
- One pole and one zero

Exercise 1. Obtain the transfer function of the following circuit.

Second-Order Filters Based on a Two-Integrator Loop.

- We can design a second-order filter by cascading two inverters. i.e.

$$
\begin{equation*}
\frac{\mathrm{V}_{\mathrm{o}}}{\mathrm{v}_{\mathrm{i}}}=\frac{-\frac{\mathrm{R}_{\mathrm{F} 1}}{\mathrm{R}_{1}}\left(-\frac{\mathrm{R}_{\mathrm{F} 2}}{\mathrm{R}_{2}}\right)}{\left(1+\mathrm{sC} \mathrm{C}_{\mathrm{F} 1} \mathrm{R}_{\mathrm{F} 1}\right)\left(1+\mathrm{sC} \mathrm{C}_{\mathrm{F} 2} \mathrm{R}_{\mathrm{F} 2}\right)}=\frac{\frac{\mathrm{R}_{\mathrm{F} 1}}{\mathrm{R}_{1}} \frac{\mathrm{R}_{\mathrm{F} 2}}{\mathrm{R}_{2}}}{\mathrm{~s}^{2} \mathrm{C}_{\mathrm{F} 1} \mathrm{R}_{\mathrm{F} 1} \mathrm{C}_{\mathrm{F} 2} \mathrm{R}_{\mathrm{F} 2}+\mathrm{s}\left(\mathrm{C}_{\mathrm{F} 1} \mathrm{R}_{\mathrm{F} 1}+\mathrm{C}_{\mathrm{F} 2} \mathrm{R}_{\mathrm{F} 2}\right)+1} \tag{6}
\end{equation*}
$$

What are the locations of the poles?

$$
\mathrm{s}_{11,2}=\frac{-\left(\mathrm{C}_{\mathrm{F} 1} \mathrm{R}_{\mathrm{F} 1}+\mathrm{C}_{\mathrm{F} 2} \mathrm{R}_{\mathrm{F} 2}\right) \pm \sqrt{\left(\mathrm{C}_{\mathrm{F} 1} \mathrm{R}_{\mathrm{F} 1}+\mathrm{C}_{\mathrm{F} 2} \mathrm{R}_{\mathrm{F} 2}\right)^{2}-4 \mathrm{C}_{\mathrm{F} 1} \mathrm{R}_{\mathrm{F} 1} \mathrm{C}_{\mathrm{F} 2} \mathrm{R}_{\mathrm{F} 2}}}{2 \mathrm{C}_{\mathrm{F} 1} \mathrm{R}_{\mathrm{F} 1} \mathrm{C}_{\mathrm{F} 2} \mathrm{R}_{\mathrm{F} 2}}
$$

To have complex poles it requires that

$$
\left(\mathrm{C}_{\mathrm{F} 1} \mathrm{R}_{\mathrm{F} 1}\right)^{2}+\left(\mathrm{C}_{\mathrm{F} 2} \mathrm{R}_{\mathrm{F} 2}\right)^{2}-2 \mathrm{C}_{\mathrm{F} 1} \mathrm{R}_{\mathrm{F} 1} \mathrm{C}_{\mathrm{F} 2} \mathrm{R}_{\mathrm{F} 2}<0 ?
$$

Which it is impossible to satisfy. Therefore, cascading two first-order filter yield a second-order filter with only real poles.
The general form of the second order two-integrator loop has the following topology.

Note the similarity of Eq. (7a) with (2). Also observe that A "-1" needs to be inserted before or after the second inverter to yield a negative feedback loop.

Let us consider the following filter where

$$
\mathrm{Z}_{3}=\mathrm{R}_{3}, \mathrm{Z}_{1}=\mathrm{R}_{1}, \mathrm{Z}_{2}=\mathrm{R}_{2}, \mathrm{Z}_{\mathrm{F} 1}=\frac{1}{\mathrm{sC} \mathrm{C}_{\mathrm{F} 1}}, \mathrm{Z}_{\mathrm{F} 2}=\frac{\mathrm{R}_{\mathrm{F} 2}}{1+\mathrm{sC}_{\mathrm{F} 2} \mathrm{R}_{\mathrm{F} 2}}
$$

Thus Eq. (7a) yields:

$$
\begin{aligned}
& \mathrm{H}=\frac{-\frac{1}{\mathrm{sC}_{\mathrm{F} 1} \mathrm{R}_{3}\left(1+\mathrm{s} \mathrm{C}_{\mathrm{F} 2} \mathrm{R}_{\mathrm{F} 2}\right)}}{1+\frac{1}{\mathrm{sC}_{\mathrm{F} 1} \mathrm{R}_{1}} \frac{\mathrm{R}_{\mathrm{F} 2} / \mathrm{R}_{2}}{\left(1+\mathrm{sC} \mathrm{C}_{\mathrm{F} 2} \mathrm{R}_{\mathrm{F} 2}\right)}} \\
& \mathrm{H}=\frac{-\frac{1}{\mathrm{C}_{\mathrm{F} 1} \mathrm{R}_{3} \mathrm{C}_{\mathrm{F} 2} \mathrm{R}_{2}}}{\mathrm{~s}^{2}+\frac{\mathrm{s}}{\mathrm{C}_{\mathrm{F} 2} \mathrm{R}_{\mathrm{F} 2}}+\frac{1}{\mathrm{C}_{\mathrm{F} 1} \mathrm{R}_{1} \mathrm{C}_{\mathrm{F} 2} \mathrm{R}_{2}}}=\frac{-\omega_{\mathrm{ol}}^{2}}{\mathrm{~s}^{2}+\frac{\omega_{\mathrm{o}}}{\mathrm{Q}} \mathrm{~s}+\omega_{\mathrm{o}}^{2}}
\end{aligned}
$$

By injecting in different current summing nodes a general biquad filter can be obtained.

$$
\begin{aligned}
& -\mathrm{V}_{\mathrm{BP}}=\mathrm{V}_{1} \stackrel{\overbrace{\mathrm{~F}}}{\mathrm{R}_{\mathrm{F}} / \mathrm{K}_{3}} \\
& V_{o}=\frac{V_{3} \frac{1}{s C_{F 1} R_{3}} \frac{R_{\mathrm{F} 2} / R_{2}}{\left(1+s C_{F 2} R_{F 2}\right)}+\frac{-\mathrm{K}_{2} \frac{R_{\mathrm{F} 2}}{R_{2}}}{\left(1+s C_{\mathrm{F} 2} R_{\mathrm{F} 2}\right)}-\frac{\mathrm{K}_{3} 3 \frac{R_{\mathrm{F} 2}}{R_{\mathrm{F} 2}} \mathrm{~V}_{1}}{\left(1+\mathrm{sC} \mathrm{C}_{\mathrm{F} 2} R_{\mathrm{F} 2}\right)}}{1+\frac{1}{\mathrm{sC} \mathrm{~F}_{1} \mathrm{R}_{1}} \frac{\mathrm{R}_{\mathrm{F} 2} / \mathrm{R}_{2}}{\left(1+\mathrm{sC} \mathrm{C}_{\mathrm{F} 2} \mathrm{R}_{\mathrm{F} 2}\right)}} \\
& \mathrm{V}_{\mathrm{o}}=\frac{\mathrm{V}_{3} \frac{1}{\mathrm{C}_{\mathrm{F} 1} \mathrm{R}_{3} \mathrm{C}_{\mathrm{F} 2} \mathrm{R}_{2}}+\mathrm{V}_{2} \mathrm{sC}_{\mathrm{F} 1} \mathrm{R}_{1} \mathrm{~K}_{2}-\mathrm{V}_{3} \mathrm{SC}_{1} \mathrm{R}_{1} \mathrm{~K}_{3}}{\mathrm{~s}^{2}+\frac{\mathrm{s}}{\mathrm{C}_{\mathrm{F} 2} \mathrm{R}_{\mathrm{F} 2}}+\frac{1}{\mathrm{C}_{\mathrm{F} 1} \mathrm{R}_{1} \mathrm{C}_{\mathrm{F} 2} \mathrm{R}_{2}}}
\end{aligned}
$$

Exercise 2. Obtain the expressions of $\mathrm{V}_{\mathrm{o} 1}$ and $\mathrm{V}_{\mathrm{o} 2}$.
More general biquad expressions and topologies can be obtained by adding a summer.

Exercise 3. Draw an active-RC topology of the block diagram show above.
Exercise 4 a) For only $V_{1} \neq 0$ obtain V_{o} and $V_{o 1}$ when instead of the resistor $R_{F 2} / K_{3}$ a capacitor $K_{4} C_{F 2}$ is used. b) For only $V_{3} \neq 0$ obtain $V_{o 1}$ when the resistor R_{3} is replaced by a capacitor $\mathrm{K}_{\mathrm{HP}} \mathrm{C}_{\mathrm{F} 1}$.

By using also the positive input of the op amp other useful filters can be obtained.

Example. Phase shifter $Z_{2}=R_{2}=R_{1}, Z_{1}=R_{1}, Z_{R}=R \quad Z_{C}=\frac{1}{s C}$ and $A \rightarrow \infty$ with $V_{1}=V_{2}$

$$
\frac{\mathrm{V}_{\mathrm{o}}}{\mathrm{~V}_{1}}=-1+\frac{\mathrm{sRC}}{1+\mathrm{sRC}} \cdot 2=\frac{-1-\mathrm{sRC}+2 \mathrm{sRC}}{1+\mathrm{sRC}}=-\frac{1-\mathrm{sRC}}{1+\mathrm{sRC}}
$$

Sallen and Key Bandpass Filter

K is a non-inverting amplifier

Using Nodal Analysis

$$
\begin{aligned}
& \mathrm{V}_{1}\left(\mathrm{~s}\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right)+\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{3}}\right)-\mathrm{sC}_{2} \mathrm{~V}_{2}-\frac{\mathrm{V}_{\mathrm{o}}}{\mathrm{R}_{3}}=\frac{\mathrm{V}_{\mathrm{i}}}{\mathrm{R}_{1}} \\
& -\mathrm{V}_{1}\left(\mathrm{sC}_{2}\right) \\
& \mathrm{V}_{\mathrm{o}}=\mathrm{KV}_{2}\left(\mathrm{sC} \mathrm{C}_{2}+\frac{1}{\mathrm{R}_{2}}\right)=0 \\
& \mathrm{H}(\mathrm{~s})=\frac{\mathrm{V}_{\mathrm{o}}(\mathrm{~s})}{\mathrm{V}_{\mathrm{i}}(\mathrm{~s})}=\frac{\mathrm{K} \frac{\mathrm{~s}}{\mathrm{R}_{1} \mathrm{C}_{1}}}{\mathrm{~s}^{2}+\left[\frac{1}{\mathrm{R}_{2} \mathrm{C}_{2}}+\left(1-\mathrm{K}+\frac{\mathrm{R}_{3}}{\mathrm{R}_{1}}+\frac{\mathrm{R}_{3}}{\mathrm{R}_{2}}\right) \frac{1}{\mathrm{R}_{3} \mathrm{C}_{1}}+\frac{\mathrm{R}_{1} \mathrm{R}_{3}}{\mathrm{R}_{1} \mathrm{R}_{3} \mathrm{R}_{2} \mathrm{C}_{1} \mathrm{C}_{2}}\right]}
\end{aligned}
$$

A particular case is for $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{R}, \mathrm{C}_{1}=\mathrm{C}_{2}=\mathrm{C}$
Then

$$
\begin{aligned}
& \omega_{\mathrm{o}}^{2}=\frac{2}{(\mathrm{RC})^{2}} ; \mathrm{Q}=\frac{\sqrt{2}}{4-\mathrm{K}} \\
& \text { or for a given } \omega_{\mathrm{o}} \text { and } \mathrm{Q} \\
& \mathrm{RC}=\frac{\sqrt{2}}{\omega_{\mathrm{o}}} \quad \text { and } \quad \mathrm{K}=4-\frac{\sqrt{2}}{\mathrm{Q}}
\end{aligned}
$$

Exercise 5. Prove the transfer function is a BP filter of the following circuit

Another technique for analysis and design based on state-variable uses building blocks.

REPRESENTATION

Let us apply to a two-integrator loop plus Mason's Rule.

For Second-topology

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{o} 1}=\frac{-\mathrm{K}_{1} V_{\mathrm{in}}}{1+\frac{\mathrm{K}_{\mathrm{Q}}}{\mathrm{~s}}+\frac{\mathrm{K}_{\mathrm{o} 1} \mathrm{~K}_{\mathrm{o} 2}}{s^{2}}}=\frac{-\mathrm{K}_{1} \mathrm{~s}^{2} V_{\text {in }}}{\mathrm{s}^{2}+\mathrm{K}_{\mathrm{Q}} \mathrm{~s}+\mathrm{K}_{\mathrm{o} 1} \mathrm{~K}_{\mathrm{o} 2}} \quad \mathrm{HP} \\
& \mathrm{~V}_{\mathrm{o} 2}=\frac{\frac{-\mathrm{K}_{1}}{\mathrm{~s}} \mathrm{~V}_{\mathrm{in}}}{1+\frac{\mathrm{K}_{\mathrm{Q}}}{\mathrm{~s}}+\frac{\mathrm{K}_{\mathrm{ol}} \mathrm{~K}_{\mathrm{o} 2}}{\mathrm{~s}^{2}}}=\frac{-\mathrm{K}_{1} \mathrm{~s}_{\mathrm{in}}}{\mathrm{~s}^{2}+\mathrm{K}_{\mathrm{Q}} \mathrm{~s}+\mathrm{K}_{\mathrm{o} 1} \mathrm{~K}_{\mathrm{o} 2}} \quad \mathrm{BP}
\end{aligned}
$$

Next we show that we can go from an Active-RC representation into a block diagram or vice versa.

KHN Biquad Filter

$$
\frac{\mathrm{V}_{\mathrm{HP}}}{\mathrm{~V}_{\mathrm{i}}}=\frac{-\frac{\mathrm{R}_{5}}{\mathrm{R}_{3}}}{1+\frac{\mathrm{K}_{\mathrm{Q}}}{\mathrm{R}_{6} \mathrm{C}_{1} \mathrm{~s}} \frac{1}{\mathrm{~s}}+\frac{\mathrm{R}_{5} / \mathrm{R}_{4}}{\mathrm{R}_{6} \mathrm{C}_{1} \mathrm{R}_{7} \mathrm{C}_{2} s^{2}}}=\frac{-\frac{\mathrm{R}_{5}}{\mathrm{R}_{3}} \mathrm{~s}^{2}}{\mathrm{~s}^{2}+\frac{\mathrm{K}_{\mathrm{Q}}}{\mathrm{R}_{6} \mathrm{C}_{1}} \mathrm{~s}+\frac{\mathrm{R}_{5} / \mathrm{R}_{4}}{\mathrm{R}_{6} \mathrm{C}_{1} \mathrm{R}_{7} \mathrm{C}_{2}}}
$$

