Course title and number: ECEN 689: Physical and Economical Operations of Sustainable Energy Systems
Term: Fall 2011
Meeting times and location: Tuesdays and Thursdays 12:45 pm-02:00 pm, Zachry 223B

Course Description and Prerequisites

This course aims to introduce graduate students the operational issues for sustainable electric energy systems. The first part of the course will introduce basic engineering, optimization and economic concepts relevant to this course. The second part of the course will discuss the “modular” view of individual electric energy processing components (e.g., variable generation, flexible demands). The third part of this course will present both physical and market operations in today's changing electricity industry. Computer simulations and demos will be available for students to create and evaluate examples of power systems.

Prerequisite: ECEN 214, ECEN 420/460, or permission from the instructor

Learning Outcomes or Course Objectives

We will discuss a broad variety of important engineering and economics issues related to integration of sustainable energy resources. We will introduce the key differences in operations and planning at the system level, as well as at the individual power producers' level. Classroom discussion and final project presentations will prepare the students to understand better how to plan and operate sustainable electric energy systems with many more renewable energy resources.

Instructor Information

Name: Dr. Le Xie
Telephone number: 979-845-7563
Email address: Lxie@mail.ece.tamu.edu
Office hours: Tuesday 2-3pm
Office location: Zachry 216M

Textbook and/or Resource Material

2. Published papers assigned by the instructor

Grading Policies for Graduate Students in 689

Homework Assignments (20%) + Mid-term Exam (25%) + Final Exam (25%) + Final Project (25%) + In-class Quiz (5%)
Grading Scale: 90-100 A; 80-89 B; 70-79 C; 60-69 D; below 60 F

Course Topics, Calendar of Activities, Major Assignment Dates
#1 Course Motivation and Overview; Syllabus
#2 Basic Concepts from Economics [1]. Ch 2
#3 Basic Concepts from Economics [1]. Ch 2
#4 Basic Concepts from Optimization
#5 Basic Concepts from Optimization
#6 Conventional Generation Resources
#7 Renewable Variable Energy Resources: Wind
#8 Renewable Variable Energy Resources: Solar, and others
#9 Conventional Electricity Demands
#10 Flexible Electricity Demands in Smart Grids
#11 Electric Power System Fundamentals: Power Flows
#12 Balancing Supply and Demand: ED and Optimal Power Flows
#13 Balancing Supply and Demand with many Variable Generation Resources
#14 Balancing Supply and Demand in the Regulated Industry and Electricity Markets
#15 Material Review; Simulations Demonstrations
#16 Midterm Exam
#17 Balancing Supply and Demand Deviations from Forecast in the Regulated Industry;
#18 Ancillary Service Markets as a Means of Balancing Demand Deviations from Forecast in the Changing Industry
#19 Participating in Markets for Electric Energy [1], Ch 4
#20 Participating in Markets for Ancillary Services
#21 Power Delivery under System Constraints in the Regulated Industry (Optimal Power Flow)
#22 Transmission Networks and Electricity Markets
#23 Nodal Markets: LMP Fundamentals
#24 Nodal Markets: LMP Fundamentals
#25 Financial Transmission Rights
#26 Guest Lecture on ERCOT Market Operations
#27 Coordinating Variable Generation Through Flexible Demands
#28 Summary
#29 Final Project Presentation

Other Pertinent Course Information

Americans with Disabilities Act (ADA)
The Americans with Disabilities Act (ADA) is a federal anti-discrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that all students with disabilities be guaranteed a learning environment that provides for reasonable accommodation of their disabilities. If you believe you have a disability requiring an accommodation, please contact Disability Services, in Cain Hall, Room B118, or call 845-1637. For additional information visit http://disability.tamu.edu

Academic Integrity
For additional information please visit: http://www.tamu.edu/aggiehonor

“An Aggie does not lie, cheat, or steal, or tolerate those who do.”